Zum Hauptinhalt springen
TU Graz/ TU Graz/ Services/ News+Stories/


Recent progress in continuum dislocation dynamics

Rate processes and finite deformation kinematics


  • Vortrag


  • Advanced Materials Science (Field of Expertise)

In the recent years, the method of discrete dislocation dynamics simulations has become popular in studying the plasticity of crystals at the microscale and small strain levels (~ 1%). Practical levels of crystal deformation encountered in experiments and in metal processing require the development of dislocation based theories of plasticity that captures all deformation mechanisms at a larger scale. The method of continuum dislocation dynamics is believed to meet this objective. The method casts the dislocations dynamics problem in the form of transport-reaction models for crystal dislocations after expressing them in terms of density fields. At this point, however, the method faces theoretical challenges, including modeling of the dislocation reactions, collective mobility, short range interaction effects, and accounting for the finite deformation kinematics in its mathematical formulation. These issues will be discussed by Anter El-Azab in this presentation, along with theoretical and computational progress made within the Materials Theory Group at Purdue.

Anter El-Azab is Professor of Materials Engineering, Professor of Nuclear Engineering (by Courtesy) and Director of the Materials Theory Group at Purdue University, Indiana, USA.

Veranstaltet von

TU Graz | Institut für Festigkeitslehre

Zeit und Ort

11. Dezember 2018, 10:15 - 11:45

TU Graz, Campus Neue Technik, Seminarraum (BMT01038), Stremayrgasse 16, 1.OG, 8010 Graz


Abhaltungssprache: Englisch


TU Graz | Institut für Festigkeitslehre
Tel.: +43 316 873 7166

Anter El-Azab, Purdue University, Indiana, USA © Prof. Anter El-Azab

Anter El-Azab, Purdue University, Indiana, USA © Prof. Anter El-Azab