SafeBattery - Competence Center for Excellent Technology (COMET project)

A collaboration between ICTM, VSI and industrial partners, supported by FFG and SFG

Lithium-based traction batteries are considered as a key technology for future automobile drive systems. An important requirement to traction batteries is the safety under normal and misuse conditions, including crash load cases. The project SafeBattery puts emphasis on all-solid-state battery systems being a forward-looking cell technology highly attractive for automotive applications.

Reseach programme: The goal of SafeBattery is to investigate the mechanical, electrochemical and thermodynamic behaviour including a hazard quantification of lithium-based single-cell and single modules under crash loads (acceleration and deformation) taking into account product life, i.e., the mechanical and chemical changes that take place over the life of the product. The main outcome of SafeBattery is a comprehensive knowledge on the multi-physical processes in lithium-based battery cells and modules under crash loads taking into account product life. This knowledge can be used by the partners to optimally integrate batteries in vehicles even within deformation zones. The project will enable enhanced design freedoms, increased vehicle range and improved safety when operating vehicles with Li-Ion cells.

Factsheet: SafeBattery is a so-called K-project of the 6th call. Link to download the factssheet containing information on the company partners, university partners and international aspects.

From the academic point of view the project is a strong collaboration of the Vehicle Safety Institute (VSI), Assoc.-Prof. Dr. Wolfgang Sinz (Head of the consortium) and Dr. Christian Ellersdorfer, with ICTM (workgroup of Prof. Wilkening). ICTM supports the project of the COMET class in terms of electrochemical and chemical characterization of commercial Li-based batteries. The strategic project P4 focus on the development of new solid electrolytes and a torough characterization of interfacial properties in all-solid-state-batteries by electrochemical means.

The Vehicle Safety Institute’s (VSI) own crash test hall offers tailor-made measuring and sensor technology for a variety of crash scenarios for batteries and their componentshat.
© Lunghammer - TU Graz

Outreach: A brief introduction into SafeBatteries activities can be found here: "When electric vehicles crash, what happens to the battery?" (TU Graz News, 2017) As yet, six so-called Success Stories have been published:

1  Equivalent Vibration Life Expectancy Profile for Lithium-Ion Batteries PDF
2  Safe Batteries Through Homogeneous Materials PDF
3  Safety of Pre-Loaded Li-Ion Battery Cells in a Crash PDF
4  Mechanical and Safety Behaviour of Cycle-Aged Li-Ion Battery Cells PDF
5  Comprehensive Hazard Analysis of Failing Automotive Li-Ion BatteriesVersion PDF
6  Orthotropic Thermal Conductivity Measurement of Pouch Li-Ion Batteries PDF


List of partners: AVL List GmbH, SFL Engineering GmbH, Kreisel Electric GmbH & Co KG, Audi AG, Mercedes-Benz AG, Porsche AG and Robert Bosch GmbH. Academia: Virtual Vehicle Competence Centre and Institute for Chemistry and Technology of Materials are assisting the Vehicle Safety Institute.

Funing period: The project period is four years and will have a total financial volume of six million euros.

Financial Support: The project is supported by the FFG as well as by the SFG (Steirische Wiftschaftsförderungsgesellschaft m.b.H). We gratefully acknowledge this financial support.


Austrian Research Promotion Agency
Steirische Wiftschaftsförderungsgesellschaft m.b.H


Further reading, recent scientific output (restricted to P4, strategic project@ICTM)
Co-workers (PhD students) from ICTM: S. Lunghammer, M. Philipp, R. Zettl, C. Hiebl, M. Brinek


The Electronic Conductivity of Single Crystalline Ga-Stabilized Cubic Li7La3Zr2O12 — A Technologically Relevant Parameter for All-Solid-State Batteries, M. Philipp, B. Gadermaier, P. Posch, I. Hanzu, S. Ganschow, M. Meven, D. Rettenwander, G. J. Redhammer, and H. M. R. Wilkening, Adv. Mater. Interf. (2020) 2000450.

Influence of defects on ionic transport in LiTaO3 - a study using EXAFS and positron annihilation lifetime spectroscopy, B. Gadermaier, L. Resch, D. Pickup, I. Hanghofer, I. Hanzu, P. Heitjans, W. Sprengel, R. Würschum, A. Chadwick, H. M. R. Wilkening, Solid State Ion. (2020) 115355.

On the dependence of ionic transport on crystal orientation in NaSICON-type solid electrolytes, L. Ladenstein, S. Lunghammer, E. Wang, L. Miara, M. Wilkening, G. Redhammer, D. Rettenwander, J. Phys. Energy 2 (2020) 035003.

Combined Effects of Anion Substitution and Nanoconfinement on the Ionic Conductivity of Li-Based Complex Hydrides, R. Zettl, L. de Kort, M. Gombotz, H. Martin R. Wilkening, P. E. de Jongh, P. Ngene, J. Phys. Chem. C 2020 124 (5) 2806.

Ion Dynamics in Al-Stabilized Li7La3Zr2O12 Single Crystals – Macroscopic Transport and the Elementary Steps of Ion Hopping, P. Posch, S. Lunghammer, S. Berendts, S. Ganschow, G. J. Redhammer, A. Wilkening, M. Lerch, B. Gadermaier, D. Rettenwander, H. M. R. Wilkening, Energy Storage Mater. 24 (2020) 220.


Analytical dissection of an automotive Li-ion pouch cell, G. Kovachev, H. Schröttner, G. Gstrein, L. Aiello, W. Sinz, C. Ellersdorfer, I. Hanzu, H. Martin R. Wilkening, A. Foitzik, M. Wellm, Batteries 5 (2019) 67.

Fluoride-Ion Batteries: On the Electrochemical Stability of Nanocrystalline La0.9Ba0.1F2.9 Against Metal Electrodes, M. Gombotz, V. Pregartner, I. Hanzu, H. M. R. Wilkening, Nanomaterials 9 (2019) 1517.

Lithium Ion Dynamics in LiZr2(PO4)3 and Li1.4Ca0.2Zr1.8(PO4)3, I. Hanghofer, B. Gadermaier, A. Wilkening, D. Rettenwander and H. M. R. Wilkening, Dalton Trans. 48 (2019) 9376.

Fast Rotational Dynamics in Argyrodite-Type Li6PS5X (X: Cl, Br, I) as Seen by 31P Nuclear Magnetic Relaxation On Cation−Anion Coupled Transport in Thiophosphates, I. Hanghofer, B. Gadermaier, and H. M. R. Wilkening, Chem. Mater. 31 (2019) 4591.

Substitutional disorder: structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I,  I. Hanghofer, M. Brinek, S. L. Eisbacher, B. Bitschnau, M. Volck, V. Hennige, I. Hanzu, D. Rettenwander, H. M. R. Wilkening, Phys. Chem. Chem. Phys. 21 (2019) 8489. 

Dispersed Solid Conductors: Fast Interfacial Li Ion Dynamics in Nanostructured LiF and LiF:Al2O3 Composites, S. Breuer, V. Pregartner, S. Lunghammer, H. M. R. Wilkening, J. Phys. Chem. C 123 (2019) 5222.

Heterogeneous F anion transport, local dynamics and electrochemical stability of nanocrystalline La1−xBaxF3−x, S. Breuer, M. Gombotz, V. Pregartner, I. Hanzu, H. M. R. Wilkening, Energy Storage Mater. 16 (2019) 481.


Untangling Structure and Dynamics of Lithium-Rich Anti-Perovskites Envisaged as Solid Electrolytes for Batteries, Isabel Hanghofer, G. J. Redhammer, S. Rohde, I. Hanzu, A. Senyshyn, H. M. R. Wilkening, and D. Rettenwander, Chem. Mater 30 (2018) 8134.

Nuclear spin relaxation in nanocrystalline β-Li3PS4 reveals low-dimensional Li diffusion in an isotropic matrix, D. Prutsch, B. Gadermaier, H. Brandstätter, V. Pregartner, B. Stanje, D. Wohlmuth, V. Epp, D. Rettenwander, I. Hanzu, and H. M. R. Wilkening, Chem. Mater 30 (2018) 7575.

Bulk and g.b. ionic conductivity in sodium zirconophosphosilicate Na3Zr2(SiO4)2PO4 (NASICON), S. Lunghammer, Q. Ma, D. Rettenwander, F. Tietz, M. Wilkening, Chem. Phys. Lett. 701 (2018) 147.

F anion dynamics in cation-mixed nanocrystalline LaF3:SrF2, S. Breuer, S. Lunghammer, A. Kiesl, M. Wilkening, J. Mater. Sci. 53 (2018) 13669.

Fast Na ion transport triggered by rapid ion exchange on local length scales: 23Na NMR spin-lattice relaxation reveals ultrafast Na ion dynamics in the solid electrolyte Na3.4Sc0.4Zr1.6(SiO4)2PO4, S. Lunghammer, D. Prutsch, S. Breuer, D. Rettenwander, I. Hanzu, Q. Ma, F. Tietz, M. Wilkening, Sci. Rep. 8 (2018) 11970.

Contact information

Vehicle Safety Institute, VSI
Institut für Fahrzeugsicherheit

Inffelgasse 23/I
A-8010 Graz- Austria

Assoc.-Prof. Dr. Wolfgang Sinz
Ass.-Prof. Dr. Christian Ellersdorfer

Institute for Chemistry and Technology of Materials
Institut für Chemische Technologie von Materialien

Stremayrgasse 9
A-8010 Graz - Austria

Univ.-Prof. Dr. Martin Wilkening


Success Stories of SafeBattery

Over the past years several Success Stories appeared highlighting important aspects of the research programme of SafeBattery. SafeBattery spans the bow from purely fundamental reasch to application-driven engineering.

  • Equivalent Vibration Life Expectancy Profile for Lithium-Ion Batteries PDF
  • Safe Batteries Through Homogeneous Materials PDF
  • Safety of Pre-Loaded Li-Ion Battery Cells in a Crash PDF
  • Mechanical and Safety Behaviour of Cycle-Aged Li-Ion Battery Cells PDF
  • Comprehensive Hazard Analysis of Failing Automotive Li-Ion BatteriesVersion PDF
  • Orthotropic Thermal Conductivity Measurement of Pouch Li-Ion Batteries PDF

Further information:

Assoc. Prof. Dipl.-Ing. Dr. techn. Wolfgang Sinz
(Head of Safe Battery)

Ass. Prof. Dipl.-Ing. Dr. techn. Christian Ellersdorfer

Vehicle Safety Institute, VSI (TU Graz)
Inffelgasse 23/I
8010 Graz