TU Graz/ TU Graz/ Services/ News+Stories/

TU Graz Researchers Optimize 3D Printing of Optically Active Nanostructures

01/17/2024 | TU Graz news | Research | Planet research | FoE Advanced Materials Science

By Philipp Jarke

The shape, size and optical properties of 3-dimensional nanostructures can now be simulated in advance before they are produced directly with high precision on a wide variety of surfaces.

Harald Plank from the Institute of Electron Microscopy and Nanoanalysis at TU Graz has been researching for over ten years how complex, free-standing 3D architectures can be produced in the nanometre range. Image source: Lunghammer - TU Graz

For around 20 years, it has been possible to modify surfaces via nanoparticles so that they concentrate or manipulate light in the desired way or trigger other reactions. Such optically active nanostructures can be found in solar cells and biological or chemical sensors, for example. In order to expand their range of applications, researchers at the Institute of Electron Microscopy and Nanoanalysis (Graz University of Technology) and the Graz Centre of Electron Microscopy (ZFE) have been working for more than one decade on manufacturing not only flat nanostructures, but in particular complex, free-standing 3D architectures. The team led by Harald Plank, Verena Reisecker and David Kuhness has achieved two breakthroughs. It is now possible to precisely simulate the required shapes and sizes of nanostructures in advance to achieve the desired optical properties, which can then be accurately produced. They have also managed to completely remove chemical impurities, incorporated during initial production without negatively impacting the 3D nanoarchitectures.

Trial-and-error procedure becomes unnecessary

Until now, three-dimensional nanostructures required a time consuming trial-and-error process until the product revealed the desired optical properties. This effort has finally been eliminated. “The consistency between simulations and real plasmonic resonances of a wide range of nanoarchitectures is very high,” explains Harald Plank. “This is a huge step forward. The hard work of the last few years has finally paid off.” The technology is currently the only one in the world that can be used to produce complex 3-dimensional structures with individual features smaller than 10 nanometres in a controlled, single step procedure on almost any surface. For comparison, the smallest viruses are around 20 nanometres in size. “The biggest challenge in recent years was to transfer the 3D architectures into high-purity materials without destroying the morphology,” explains Harald Plank. “This development leap enables new optical effects and application concepts thanks to the 3D aspect.” Nanoprobes or optical tweezers with sizes in the nanometre range are now within reach.

Precisely controlled electron beam

The researchers use focused electron beam induced deposition to produce the nanostructures. The relevant surface is exposed to special gases under vacuum conditions. A finely focused electron beam splits the gas molecules, whereupon parts of them change into a solid state and adhere to the desired location. “By precisely controlling beam movements and exposure times, we are able to produce complex nanostructures with lattice- or sheet-like building blocks in a single step”, explains Harald Plank. By stacking these nano-volumes on top of each other, three-dimensional structures can ultimately be constructed.

This research area is anchored in the Field of Expertise “Advanced Materials Science“, one of five strategic foci of TU Graz.

Would you like to receive the latest stories, news, research stories, interviews or blog posts from TU Graz directly on your smartphone or in your email inbox? Subscribe to the TU Graz Telegram newsletter free of charge.

Contact

Harald PLANK
Assoc.Prof. Dipl.-Ing. Dr.techn.
TU Graz | Institute of Electron Microscopy and Nanoanalysis
Phone: +43 316 873 8821
harald.planknoSpam@tugraz.at

Verena REISECKER
Dipl.-Ing. Dipl.-Ing. BSc
TU Graz | Institute of Electron Microscopy and Nanoanalysis
Phone: +43 316 873 8334
verena.reiseckernoSpam@tugraz.at

Harald Plank from the Institute of Electron Microscopy and Nanoanalysis at TU Graz has been researching for over ten years how complex, free-standing 3D architectures can be produced in the nanometre range. Image source: Lunghammer - TU Graz
Many examples of shapes and structures that can be produced using 3D nanoprinting technology are created during students' internships - such as this miniature tower. Image source: CDL DEFINE/TU Graz
Staggered printing of the individual molecular building blocks allows the production of a wide variety of shapes. Image source: CDL DEFINE/TU Graz
3D nanoprinting of conical structures and their optical activity: The real structure is shown on the left; the plasmonic activity (centre) corresponds very well with the simulation (right). This allows the optical properties of such structures to be precisely tuned. Image source: CDL DEFINE/TU Graz