IEE/Institut/Team
Benjamin Stöckl
Dipl.-Ing. BSc
Mobil
+43 680 3154834

Researcher Profiles
Pure: benjamin-stöckl
OrcID: 0009-0005-6579-8169
Google Scholar ID: nFD7QXwAAAAJ
LinkedIn: benjamin-stöckl

Biografie
Benjamin Stöckl studierte Elektrotechnik an der TU Graz und schloss den Master in „Elektrotechnik-Wirtschaft“ im Jänner 2024 ab. In seiner Masterarbeit beschäftigte er sich mit dem optimalen Einsatz von Batteriespeichern in Elektriztitätssystemen. Seit März 2024 ist er als Universitäts-Projektassistent und Doktorand am Institut für Elektrizitätswirtschaft und Energieinnovation (IEE) an der TU Graz tätig. Seine Forschungsinteressen liegen in den Bereichen Energiespeicherung, Erneuerbare Energien und Optimierung von Energiesystemen.

Interessensgebiete
Energiespeicherung, Erneuerbare Energien, Optimierung von Energiesystemen

Publikationen

Beitrag in Fachzeitschrift
Benjamin Stöckl, Thomas Florian Klatzer, Gerhild Scheiber, Alexandra Froschauer and Sonja Wogrin Wirtschaftlichkeitsanalyse von Batteriespeichern im 110-kV-Netz Elektrotechnik und Informationstechnik 141, 340-347, 2024
DOI: https://doi.org/10.1007/s00502-024-01223-y

Projekte

One of the fundamental problems of using optimization models that represent complex systems – e.g. power systems on their path towards achieving net-zero emissions – is the trade-off between model accuracy and computational tractability. Many applied optimization models that use different time series as data input have become increasingly challenging to solve due to the large time horizons they span and the high complexity of technical constraints with short- and long-term time dynamics. To overcome computational intractability of these optimization models, the dimension of input data and model size is commonly reduced through time series aggregation (TSA) methods. However, applying TSA for optimization models that are governed by varying time dynamics simultaneously is quite challenging. TSA methods mostly focus on short-term dynamics, and rarely include long-term dynamics due to the inherent limitations of TSA. As a result, longer-term dynamics are not captured well by aggregated models, which is imperative for reliably modelling many complex systems. Moreover, traditional TSA methods are based on the common belief that the clusters that best approximate the input data also lead to the aggregated model that best approximates the full model, while the metric that really matters –the resulting output error in optimization results – is not well addressed. This belief is mainly based on the lack of theoretical underpinning relating inputs and output error, rendering existing methods trial-and-error heuristics at best. We plan to challenge this belief by discovering the currently unknown relation between input and output error, and to overcome existing TSA shortcomings by developing the novel theoretical TSA framework for optimization models with varying time dynamics, thereby tapping into unprecedented potential of computational efficiency and accuracy. If this project is successful, it would have untangled the Gordian knot of data aggregation in optimization.
Fördergeber*innen
  • European Commission - Europäische Kommission, EU
Beginn: 31.12.2023
Ende: 30.12.2028
Details
Kontakt
image/svg+xml

Institut für Elektrizitätswirtschaft und Energieinnovation
Inffeldgasse 18
8010 Graz

Tel.: +43 316 873 7901

IEEnoSpam@TUGraz.at
www.IEE.TUGraz.at