IEE/Institut/Team
Luca Santosuosso
Dott. Dott. Mag.

Researcher Profiles
Pure: luca-santosuosso
OrcID: 0000-0002-7865-3883
Google Scholar ID: Adli6vMAAAAJ
SCOPUS: 58795488600
ResearchGate: Luca_Santosuosso
HAL: luca-santosuosso
LinkedIn: lucasantosuosso

Biografie
Luca Santosuosso erwarb im Juli 2019 einen Bachelor-Abschluss in Computer Engineering an der Universität Roma Tre und im Oktober 2021 einen Master-Abschluss in Control Engineering an der Sapienza-Universität Rom. Im Januar 2025 schloss er seine Promotion im Bereich Energie und Prozesse an der Mines Paris – PSL ab, wo er 2021 auch als Forschungsingenieur am europäischen Horizon-2020-Projekt Smart4RES tätig war. Im Jahr 2024 war er als Gastdoktorand am DTU Wind and Energy Systems. Seit Februar 2025 ist er Postdoktorand an der Technischen Universität Graz. Seine Forschungsschwerpunkte liegen in der Optimierung und Regelung mit Anwendungen auf Energiesysteme.

Interessensgebiete
Optimierung, Regelung, Operations Research, Energiesysteme

Publikationen

Beitrag in Fachzeitschrift
Luca Santosuosso, Simon Camal, Arthur Lett, Guillaume Bontron and Georges Kariniotakis Distributed economic model predictive control for the joint energy dispatch of wind farms and run-of-the-river hydropower plants Electric Power Systems Research , 2024
DOI: https://doi.org/10.1016/j.epsr.2024.110805
L. Santosuosso, S. Camal, F. Liberati, A. Di Giorgio, A. Michiorri and G. Kariniotakis Stochastic economic model predictive control for renewable energy and ancillary services trading with storage Sustainable Energy, Grids and Networks , 2024
DOI: https://doi.org/10.1016/j.segan.2024.101373
Tagungsbeitrag
L. Santosuosso, S. Camal, A. Di Giorgio, F. Liberati, A. Michiorri, G. Bontron and G. Kariniotakis ECONOMIC MODEL PREDICTIVE CONTROL FOR THE ENERGY MANAGEMENT PROBLEM OF A VIRTUAL POWER PLANT INCLUDING RESOURCES AT DIFFERENT VOLTAGE LEVELSIET Conference Proceedings

Projekte

One of the fundamental problems of using optimization models that represent complex systems – e.g. power systems on their path towards achieving net-zero emissions – is the trade-off between model accuracy and computational tractability. Many applied optimization models that use different time series as data input have become increasingly challenging to solve due to the large time horizons they span and the high complexity of technical constraints with short- and long-term time dynamics. To overcome computational intractability of these optimization models, the dimension of input data and model size is commonly reduced through time series aggregation (TSA) methods. However, applying TSA for optimization models that are governed by varying time dynamics simultaneously is quite challenging. TSA methods mostly focus on short-term dynamics, and rarely include long-term dynamics due to the inherent limitations of TSA. As a result, longer-term dynamics are not captured well by aggregated models, which is imperative for reliably modelling many complex systems. Moreover, traditional TSA methods are based on the common belief that the clusters that best approximate the input data also lead to the aggregated model that best approximates the full model, while the metric that really matters –the resulting output error in optimization results – is not well addressed. This belief is mainly based on the lack of theoretical underpinning relating inputs and output error, rendering existing methods trial-and-error heuristics at best. We plan to challenge this belief by discovering the currently unknown relation between input and output error, and to overcome existing TSA shortcomings by developing the novel theoretical TSA framework for optimization models with varying time dynamics, thereby tapping into unprecedented potential of computational efficiency and accuracy. If this project is successful, it would have untangled the Gordian knot of data aggregation in optimization.
Fördergeber*innen
  • European Commission - Europäische Kommission, EU
Beginn: 31.12.2023
Ende: 30.12.2028
Details
Kontakt
image/svg+xml

Institut für Elektrizitätswirtschaft und Energieinnovation
Inffeldgasse 18
8010 Graz

Tel.: +43 316 873 7901

IEEnoSpam@TUGraz.at
www.IEE.TUGraz.at