Abgeschlossene Forschungsprojekte

Accident data analysis
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2011
Ende: 04.12.2024
This project investigates the mechanical behaviour of prismatic cells under varying load positions. Analysing the behaviour of innovative battery cells under crash load is essential in order to ensure and improve the safety of electric vehicles in defined crash load cases or to improve them.
Mitarbeiter*innen
Projektleiter/in an der OE
Lena Neidhart
Dipl.-Ing. BSc
Beginn: 31.08.2024
Ende: 29.11.2024
The aim of this research project is to investigate the behaviour of lithium-ion batteries under mechanical loads. An essential part is the mechanical characterisation of battery cells and battery packs under quasi-static and dynamic loads.
Mitarbeiter*innen
Projektleiter/in an der OE
Markus Fasching
Dipl.-Ing. BSc
Beginn: 30.04.2023
Ende: 30.10.2024
The project's aim is to characterise and analyse the mechanical behaviour and safety of next-generation battery cells under realistic confinement conditions.
Mitarbeiter*innen
Projektleiter/in an der OE
Markus Fasching
Dipl.-Ing. BSc
Beginn: 31.12.2023
Ende: 30.10.2024
The project aim is to test battery cells under realistic boundary conditions. This means under conditions that a battery cell also experiences in the battery pack or module. To this end, battery cells are to be tested under preload to analyse how they behave under different types of mechanical load. Furthermore, the results will be compared with those of other cells that differ in geometry and cell chemistry but experience the same boundary conditions and loads.
Mitarbeiter*innen
Projektleiter/in an der OE
Markus Fasching
Dipl.-Ing. BSc
Beginn: 31.12.2023
Ende: 30.10.2024
The aim of this research project is to increase safety on the basis of electrochemical impedance spectroscopy for lithium-ion batteries by means of experimental tests.
Mitarbeiter*innen
Projektleiter/in an der OE
Patrick Höschele
Dipl.-Ing. Dipl.-Ing. Dr.techn. BSc
Beginn: 30.11.2023
Ende: 29.09.2024
Systematic testing and validation of automated driving functions is one of the keys to bringing this technology to market maturity. In addition to the advantage of being closer to reality, road testing has the disadvantage that the time and cost required for complex automation levels for SAE Level 3+ is enormous. Currently, many institutions are working to largely replace road testing with X-in-the-loop methods ranging from virtual simulation (model-in-the-loop), component test benches (simulation, hardware, processor-in-the-loop) and whole vehicle test benches (human-in-the-loop, vehicle-in-the-loop). One of the greatest challenges is to reproduce the complex interaction between ADAS/AD sensor technology, vehicle guidance algorithms and vehicle actuators (drive, brake, steering) with sufficient realism on a test bench. The generation of relevant driving scenarios in scenario-based testing also turns out to be complex, since the criticality and relevance of scenarios are difficult to describe. The project is concerned with the systematic testing of automated driving functions on a test bench concept developed specifically for the project. It enables overall vehicle integration and provides test capabilities for automated driving functions, the entire powertrain and highly dynamic driving maneuvers at the limit. For this purpose, an existing simulation environment is applied to a complete vehicle test bench with hard real-time in a first step. Available sensor models and sensor stimulators are implemented on the test bench and validated in detail with test drives under different environmental conditions. Driving on the already modeled in detail highway section of the A2 Graz-West to Laßnitzhöhe is chosen as scenario. A validated traffic flow simulation generates realistic behavior of vehicles of the surrounding traffic. These scenarios are extended with critical situations by so-called "stress testing" and determined representatively from an in-depth analysis of accident databases. The project concludes with an impact analysis of the presented concept, which demonstrates the efficient development of alternative powertrains, vehicle dynamics control systems and automated driving functions. The innovation lies in the enormous closeness to reality which is achieved by real-time behavior of all components, digitalization of real routes, traffic flows and accident data as well as validation and verification of the system. Currently, there are no standards or laws governing the approval of automated vehicles, and the development of the test bench with the highest level of realism in the world also means the opportunity to play an influential role here.
Mitarbeiter*innen
Projektleiter/in an der OE
Arno Eichberger
Assoc.Prof. Dipl.-Ing. Dr.techn.
Martin Fellendorf
Univ.-Prof. Dr.-Ing.
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2021
Ende: 29.09.2024
In this project, geometric designs for the protection of the fixed obstacle are to be investigated and compared using finite element (FE) simulation.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 05.05.2024
Ende: 29.09.2024
The recent update to the Euro NCAP Driver Monitoring rating (part of the Safety Assist rating) incentivises manufacturers to use camera-based sensors, to monitor the vehicle interior. While the intent is to identify drivers who are fatigued, distracted or impaired, the sensor information could potentially be used to reduce occupant injury risk in case of a crash. As they provide information in 3D space, 3D cameras are a particularly promising technology in this respect. The present study investigates the potential to use the data provided by these sensors to reduce occupnat injuries in case of a frontal collision.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 04.03.2024
Ende: 05.09.2024
The aim of this research project is to test cells under real boundary conditions.
Mitarbeiter*innen
Projektleiter/in an der OE
Markus Fasching
Dipl.-Ing. BSc
Eva Heider
Dipl.-Ing. BSc BSc
Beginn: 31.08.2023
Ende: 30.08.2024
The aim of this research project is to generate a new dataset from volunteer tests describing human behavior in braking maneuvers in novel seating positions. This dataset will be used for the calibration or validation of active HBMs. Further, the sensitivity of injury risks in crashes with varying pre-crash postures - as recorded in the volunteer tests for different anthropometries - will be analysed.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2023
Ende: 30.07.2024
The data provides information about driving behavior, taking into account the respective traffic light phases and the identification of potentially risky traffic situations. Conflicts between cyclists and pedestrians and between cyclists and cars are to be investigated between cyclists and cars will be investigated.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in von mehreren TU Graz Instituten
Martin Schachner
Dipl.-Ing. Dr.techn. BSc
Projektleiter/in an der OE
Thomas Pock
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.03.2024
Ende: 30.07.2024
Numerous measures are being taken to reduce road accidents. The increasing automation of vehicles is expected to lead to a further reduction in road accidents. A so-called "front brake light" could also contribute to this reduction. This brake light is a forward-facing lighting device that lights up at the same time as the rear brake light when the service brake is applied.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 29.02.2024
Ende: 29.06.2024
In experimental research experiments, the behavior of Li-ion battery cells under thermal abuse load cases is investigated. Based on the test data, the SOC influence on the safety under thermal load is analyzed in order to increase the safety of future electrical energy storage systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Markus Fasching
Dipl.-Ing. BSc
Beginn: 13.05.2024
Ende: 12.06.2024
Concrete vehicle restraint systems with noise protection structures are often installed on road sections with increased noise emissions. In this project, the influence of different heights of the noise protection structure on the vehicle kinematics and system deflection in the event of a vehicle impact is analysed using FE simulation.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 29.02.2024
Ende: 05.06.2024
The aim of this research project is to determine the transferability of the crash behaviour of innovative round cell concepts with regard to different deformations and strain rates.
Mitarbeiter*innen
Projektleiter/in an der OE
Eva Heider
Dipl.-Ing. BSc BSc
Beginn: 30.11.2023
Ende: 30.05.2024
The aim is that the knowledge gained will provide input for further research and teaching activities in the research area(s) of accident and injury analysis and prevention.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 31.03.2024
Ende: 30.05.2024
Due to the continuous further development of battery cells, it is also necessary to constantly improve the associated housings of batteries and battery modules. and battery modules. In order to continue to guarantee the safety of these battery housings, it is essential to analyse not only the crash behaviour of the battery cells but also that of the protective housing. A key part of this research is characterising the mechanical properties of the materials and the housing itself.
Mitarbeiter*innen
Projektleiter/in an der OE
Eva Heider
Dipl.-Ing. BSc BSc
Beginn: 31.01.2024
Ende: 29.04.2024
Within the project requirements for human models are defined and load cases for the comparison of models are developed.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 01.10.2023
Ende: 29.04.2024
The CD laboratory will focus in the design of high performance alloys by means of thermomechanical processing. These materials are usually exposed to high temperatures and loads at service condi-tions, therefore requiring a tight control of the microstructure in terms of homogeneity, grain size and precipitation state to assure their performance. On the other hand, damage produced during pro-cessing such as pores, cavities, hot tearing, shear bands and cracks, decrease drastically the proper-ties of any final product. The damage conditions must be identified and avoided. Non-ferrous metals for (1) light weight design and (2) high temperature applications will be analized. The main objective of this laboratory is to get a deep understanding and sound descriptions of the microstructure evolution of non-ferrous alloys during thermomechanical processing to design high performance products. To achieve this, experimental, modelling and simulation tools will be required (1) to characterize, describe and model the physical phenomena that take place in metallic materials during their industrial processing as well as at service conditions, and (2) to develop simple physical based multi-scale models that can be generalized for various materials and processes. Additionally, the modification of traditional processing routes will be oriented to reduce the energy involved during metals processing.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in bei Kooperationen mit externen Organisationen
Maria Cecilia Poletti
Assoc.Prof. Dr.techn.
Projektleiter/in an der OE
Georg Baumann
Dipl.-Ing. BSc
Teilnehmer*innen / Mitarbeiter*innen
Ricardo Henrique Buzolin
Eng. Mestr.
Stefan Fortmüller
Dipl.-Ing. BSc
Ranganada Kasyap Pradeep Godavarthy Anantha Venkata
Franz Miller Branco Ferraz
Eng.
René Wang
Dipl.-Ing. BSc
Beginn: 30.04.2017
Ende: 29.04.2024
The aim is that the knowledge gained will provide input for further research and teaching activities in the research area(s) of accident and injury analysis and prevention.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 10.03.2024
Ende: 07.04.2024
The aim of this research project is to develop a device that is able to represent the intrusion kinematics as observed in a full vehicle crash in the IIHSside impact test.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.07.2023
Ende: 30.03.2024
In order to increase the range of electric vehicles, the weight of batteries must be reduced and the available space in the underbody between the subframe and the rear axle must be used in the best possible way. Aluminium as a material for battery housings has a high potential for lightweight construction, but is disadvantageous in terms of fire protection, costs and ecological footprint during production. One approach to reducing the weight, installation space and costs of batteries is functional integration, i.e. that components take over several multiphysical functions: Thermoregulation, vibration damping, impact energy dissipation, fire protection, electromagnetic shielding, ... By combining wood and steel in a battery casing, favourable structural-mechanical and thermal properties of both materials can complement each other and can therefore be exploited. The project Bio!LIB aims to demonstrate that the combination of these materials can provide (1) excellent temperature management, (2) crash performance, (3) vibration damping, (4) thermal propagation containment (at a level of state-of-the-art enclosures and beyond) in combination with (5) low costs and low weight and (6) a small ecological footprint. This is demonstrated by means of a segment (in module or cell stack size) of a battery housing. Aspects of connection, manufacturing technology, increased durability through wood modification, material separation and recycling are also investigated.
Mitarbeiter*innen
Projektleiter/in an der OE
Florian Feist
Dipl.-Ing. Dr.techn.
Beginn: 31.03.2021
Ende: 30.03.2024
Concrete vehicle restraint systems with noise protection structures are often installed on road sections with increased noise emissions. In this project, the influence of different heights of the noise protection structure on the vehicle kinematics and system deflection in the event of a vehicle impact is analysed using FE simulation.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 30.11.2023
Ende: 29.02.2024
The objective of this research project is to objectively examine different assistance systems for effectiveness and acceptance and to assess to what extent accidents between cyclists and trucks could be avoided or the consequences of accidents could be mitigated.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in bei Kooperationen mit externen Organisationen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2021
Ende: 28.02.2024
The objective is to improve the safety of children as pedestrians in accidents with trucks. For this purpose, pedestrian behaviour is investigated in a multi-method approach. Accidents and dangerous situations are analysed and the underlying factors and their interaction are identified.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2021
Ende: 28.02.2024
The aim of this research project is to investigate the changes in cell volume as cells age.
Mitarbeiter*innen
Projektleiter/in an der OE
Patrick Höschele
Dipl.-Ing. Dipl.-Ing. Dr.techn. BSc
Beginn: 30.06.2023
Ende: 30.12.2023
The aim of INTERACT is to improve the effectivity assessment of active pedestrian safety systems, which contributes to the prevention of pedestrian accidents and the reduction of injury severities.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in von mehreren TU Graz Instituten
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Projektleiter/in an der OE
Horst Bischof
Univ.-Prof. Dipl.-Ing. Dr.techn.
Arno Eichberger
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.06.2020
Ende: 30.12.2023
Erstellung von Kurzgutachten zur Beurteilung einer HWS Verletzung
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Kontaktperson
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.05.2006
Ende: 30.12.2023
The Vehicle Safety Institite offer testing of road restraint systems according to EN 1317 and pole testing according to EN 12767. The Institute fulfills the requirements of EN 17025 and is accredited as Testing Laboratory. The accredited technical fields are published in the list of accredited bodies at www.bmwfj.gv.at/akkreditierung with the identification number 259.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Kontaktperson
Beginn: 30.06.2009
Ende: 30.12.2023
2004 wurde das Projekt ZEDATU beim Österreichischen Verkehrssicherheitsfonds als Pilotprojekt gestartet. Ein großer Unterschied zur Nationalen Statistik besteht in der vollständigen Unfallrekonstruktion jedes Verkehrsunfalls mit dem Unfallrekonstruktionsprogramm PC CRASH. Dadurch stehen Unfallparameter wie beispielsweise Ausgangs- und Kollisionsgeschwindigkeit der beteiligten Fahrzeuge, Fahrlinie, Reaktionspunkt etc. für eine Auswertung zur Verfügung. Ein wichtiger Punkt ist die Einbeziehung der Datenfelder der amtlichen Unfallstatistik, wodurch eine österreichspezifische Auswertung durch Verknüpfung der Unfalltypen der Unfallzählblätter möglich ist. Derzeit erfolgt eine fortlaufende Datensammlung von Verkehrsunfällen mit Personenschaden.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2005
Ende: 30.12.2023
The aim of this research project is the scientific investigation of the behaviour of running gears in abstracted dynamic principle tests.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 31.12.2022
Ende: 30.12.2023
In addition to the controlled ageing of complete vehicle batteries, the aim of this research project is to analyse the safety behaviour of the batteries over the entire service life and to further develop test cycles, test conditions and test protocols in order to continuously advance the development of electrical energy storage systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Marco Raffler
Dipl.-Ing. BSc
Beginn: 31.12.2022
Ende: 30.12.2023
The aim of this research project is to assess the occupant injury risk in side crash tests using virtual human body models.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 31.08.2023
Ende: 30.12.2023
The aim of this research project is the integration of a new airbag model for side impact into an existing occupant simulation model.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.07.2023
Ende: 30.12.2023
The aim of this project is the simulation-based application of recommendations for action for critical transitions from steel restraint systems to precast concrete elements in existing buildings with the aim of increasing safety in the event of a vehicle impact.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 31.07.2021
Ende: 19.12.2023
The aim of this research project is to investigate the impact of handlebar ends on the abdominal region of children in bicycle accidents with human body models.
Mitarbeiter*innen
Projektleiter/in an der OE
Nico Erlinger
Dipl.-Ing. BSc
Beginn: 31.05.2023
Ende: 29.11.2023
The aim of the ENTRANT project is the analysis of the deployment of airbags.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.03.2023
Ende: 29.11.2023
The aim of this research project is to characterise the mechanical behaviour of different round cells under varying loading directions, loading conditions and loading speeds for implementation in a modified finite element model.
Mitarbeiter*innen
Projektleiter/in an der OE
Eva Heider
Dipl.-Ing. BSc BSc
Beginn: 31.05.2023
Ende: 29.11.2023
The aim of this research project is to characterise the mechanical behaviour of different round cells under varying loading directions, loading conditions and loading speeds for implementation in a modified finite element model.
Mitarbeiter*innen
Projektleiter/in an der OE
Eva Heider
Dipl.-Ing. BSc BSc
Beginn: 31.05.2023
Ende: 29.11.2023
The aim of this research project is to characterise predefined plastics at different high loading speeds
Mitarbeiter*innen
Projektleiter/in an der OE
Georg Baumann
Dipl.-Ing. BSc
Beginn: 30.06.2023
Ende: 30.10.2023
Within the scope of this project, different databases (e.g. CEDATU database for in-depth analysis of traffic accidents, AIT accident database, infrastructure, weather and traffic count data) will be intersected (see WP2) and analyzed using various methods of similarity analysis and statistical pattern recognition and data mining (see AP3/AP4) to identify potential hazards and risk situations. For this purpose, a sample of heavy traffic accidents will be analyzed in detail by means of accident reconstruction. Here, accidents are divided into a pre-collision, collision and post-collision phase and certain indicator values are determined for each phase. Subsequently, (risk) factors are derived, which have a causal are derived which have a causal influence on the accident.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2021
Ende: 29.09.2023
The aim of this research project is to analyze the behavior of innovative battery cells in a crash load case in order to ensure or improve the safety of electric vehicles in defined crash load cases.
Mitarbeiter*innen
Projektleiter/in an der OE
Eva Heider
Dipl.-Ing. BSc BSc
Beginn: 30.04.2023
Ende: 29.09.2023
The aim is that the knowledge gained will provide input for further research and teaching activities in the research area(s) of accident and injury analysis and prevention.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 20.08.2023
Ende: 28.09.2023
The aim of this research project is to assess the injury risk in e-scooter accidents and to derive recommendations for accident and injury prevention.
Mitarbeiter*innen
Projektleiter/in an der OE
Christoph Leo
Dipl.-Ing. Dr.techn. BSc
Beginn: 30.11.2021
Ende: 30.07.2023
The aim of this research project is to apply constructive measures on vehicle restraint system transition structures.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 30.04.2023
Ende: 30.07.2023
The aim of this research project is to analyze the influence of different system combinations on the retention properties of the transition structure.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 30.04.2023
Ende: 30.07.2023
Concepts and implementation strategies for the design of Vehicle restraint system transition structures.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 30.06.2021
Ende: 29.06.2023
The aim of this research project is to analyse how different and safety-critical battery cells with different SOCs behave under mechanical load.
Mitarbeiter*innen
Projektleiter/in an der OE
Markus Fasching
Dipl.-Ing. BSc
Beginn: 31.12.2022
Ende: 16.04.2023
The aim of this research project is to generate data on the safety of future electrical energy storage systems by means of research experiments and to create an idea of how differently and safety-critically heavily aged cells behave under mechanical load.
Mitarbeiter*innen
Projektleiter/in an der OE
Markus Fasching
Dipl.-Ing. BSc
Beginn: 31.08.2022
Ende: 30.03.2023
The aim of this research project is to develop a device that is able to represent the intrusion kinematics as observed in a full vehicle crash in the IIHSside impact test.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 30.11.2022
Ende: 30.03.2023
The aim of the AURORA project is to analyze airbag deployment.
Mitarbeiter*innen
Projektleiter/in an der OE
Bernd Schneider
Dipl.-Ing.
Beginn: 31.08.2022
Ende: 27.02.2023
The aim of this research project is to characterise the mechanical behaviour of lithium-ion cylindrical cells under different loading directions.
Mitarbeiter*innen
Projektleiter/in an der OE
Eva Heider
Dipl.-Ing. BSc BSc
Beginn: 31.10.2022
Ende: 27.02.2023
The aim of this research project is to characterise the mechanical properties of uncharged and charged battery cells and cell stacks under laboratory conditions.
Mitarbeiter*innen
Projektleiter/in an der OE
Markus Fasching
Dipl.-Ing. BSc
Beginn: 31.10.2022
Ende: 27.02.2023
The aim of this research project is to analyse the battery behaviour under static and dynamic load with crash load-based special impactors.
Mitarbeiter*innen
Projektleiter/in an der OE
Stefan Grollitsch
Dipl.-Ing. BSc
Beginn: 31.12.2022
Ende: 27.02.2023
The aim of this research project is to analyse the behaviour of LI-ion batteries under mechanical abuse load conditions.
Mitarbeiter*innen
Projektleiter/in an der OE
Markus Fasching
Dipl.-Ing. BSc
Beginn: 31.01.2023
Ende: 27.02.2023
Development of protocols, procedures and tools for evaluating passive vehicle safety via virtual testing.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.07.2021
Ende: 30.01.2023
The aim of this research project is, in addition to the targeted aging of battery cells, the analysis of battery behavior over the entire service life, the new and further development of test cycles, test conditions and test protocols in order to continuously advance the development of electrical energy storage systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2021
Ende: 30.12.2022
The aim of this research project is the scientific investigation of the behavior of chassis by mapping real situations in abstracted dynamic principle tests.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 31.12.2021
Ende: 30.12.2022
The scope of this study is the re-use of deformed LIBs.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2022
Ende: 30.12.2022
The aim of this research project is to develop a tool to assess the injury risk by combining multiple criteria from virtual human body models
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 30.06.2022
Ende: 30.12.2022
The aim of this research project is to detect the critical mechanical loads on the battery storage using vehicle acceleration signals.
Mitarbeiter*innen
Projektleiter/in an der OE
Marco Raffler
Dipl.-Ing. BSc
Beginn: 30.06.2022
Ende: 30.12.2022
In the current research project, the focus is on the development of new innovative, modular passive protective devices in terms of improving "Durability", "Visibility" and "Recognizability". These terms include the material corrosion issue, traffic safety and aspects of highly automated driving.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2018
Ende: 30.12.2022
The aim of this research project is to demonstrate the advantage of using virtual simulation for the evaluation of ADAS.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2019
Ende: 30.12.2022
The objective of VIRTUAL is to improve the safety of road users by providing procedures and open access tools to assess the benefit of novel safety systems. The goal is to establish a European based global hub for Open Source Virtual Testing (OpenVT) and to demonstrate its success in traffic safety. Open Source Human Body Models of both men and women will be made available in a format that is scalable to represent different ages and sizes of car occupants, vulnerable road users, and users of public transport.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.05.2018
Ende: 29.11.2022
In the present research project, the influence of special elements on the restraint properties of the vehicle crash barrier system will be scientifically investigated.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 28.02.2022
Ende: 29.09.2022
During charging and discharging of Li-ion batteries the thickness of the cell increases reversible due to intercalation (“breathing”) and non-reversible due to ageing effects (“swelling”). This may influence crash safety and lifetime of a battery module. Within project BonuS these aspects will be investigated scientifically based on numerical simulations and experimental methods on the laboratory scale. In future, the scientific insights of this research project may enable the development of significantly improved battery modules with respect to safety and lifetime.
Mitarbeiter*innen
Projektleiter/in an der OE
Simon Franz Heindl
Dipl.-Ing.
Martin Wilkening
Univ.-Prof. Dr.rer.nat.
Beginn: 30.09.2019
Ende: 29.09.2022
The aim of this research project is to develop methods for calculating additional variables from crash tests.
Mitarbeiter*innen
Projektleiter/in an der OE
Stefan Smit
Dipl.-Ing. BSc
Beginn: 31.05.2021
Ende: 30.07.2022
The aim of this research project is to determine the potential of driver assistance systems for accident prevention or injury reduction on the high-ranking road network through in-depth analysis of traffic accidents.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.04.2022
Ende: 30.07.2022
The main objective of this research project is to develop and validate a method for detecting motorcycle near miss situations based on smartphone and wearable sensor data.
Mitarbeiter*innen
Projektleiter/in an der OE
Nico Erlinger
Dipl.-Ing. BSc
Beginn: 31.03.2021
Ende: 29.06.2022
Development of procedures for Head Impact Determination of cars with deployable pedestrian protection systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.11.2021
Ende: 29.06.2022
Analysis of the behavior of innovative battery cells in the crash load case at different load directions, charge states and impact speeds and to predict the test results using a modified finite element model.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 28.02.2022
Ende: 29.06.2022
The research project will investigate the influence of different anthropometries and seating positions on the occupant injury injury in frontal crashes using various restraint control strategies.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 30.04.2022
Ende: 29.06.2022
The research project will investigate concepts for protecting occupants in new seating positions in autonomous driving vehicles in the future.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.04.2021
Ende: 29.04.2022
The aim of this research project is to predict and pre-evaluate the experimental results using a modified finite element model with subsequent verification of the mechanical properties to characterize the behavior of cylindrical and prismatic cells.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2021
Ende: 29.04.2022
Electric Powered Two Wheelers (E-PTWs) will play an important role in the future mobility. Although the number of E-PTWs is strong increasing, manufactures are struggling to develop vehicles that can respond to the desires of the customers in terms of performance, safety and costs, especially in case of electric motorcycles. The cause can be found in the high development and production costs of the traction battery and its integration that in the current State of the Art is developed separately for every vehicle. This creates an increase in the development costs and limits the products that manufactures can bring to the market, with a negative effect in the market penetration of E-PTWs.
Mitarbeiter*innen
Projektleiter/in an der OE
Christian Ellersdorfer
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 01.09.2019
Ende: 31.03.2022
The aim of this research project is to investigate the mechanical behavior of a lithium-ion pouch cell under dynamic loading and to develop a finite element simulation model that can represent this behavior.
Mitarbeiter*innen
Projektleiter/in an der OE
Marco Raffler
Dipl.-Ing. BSc
Beginn: 31.10.2021
Ende: 30.03.2022
The aim of this research project is to characterize the mechanical properties of uncharged battery modules as a cell composite under laboratory conditions in order to analyze the mechanical load limits and mechanical properties.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 28.02.2022
Ende: 30.03.2022
The objective of this research project is to systematically assess the road safety of a planned design variant of a road section by means of a vehicle dynamics analysis.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2021
Ende: 30.03.2022
The aim of this research project is the analysis of the behavior of LI-ion batteries under mechanical abuse load cases by the Battery Safety Center Graz (BSCG) at the Graz University of Technology.
Mitarbeiter*innen
Projektleiter/in an der OE
Alessio Sevarin
Dott. mag.
Beginn: 28.02.2022
Ende: 30.03.2022
In this research project, the behavior of innovative suspension under specific impact loads is scientifically investigated. These analyzes provide important insights in the key-research area of the Vehicle Safety Institute "Virtual and Physical Testing".
Mitarbeiter*innen
Projektleiter/in an der OE
Stefan Smit
Dipl.-Ing. BSc
Beginn: 31.12.2020
Ende: 30.12.2021
The aim of this research project is to scientifically investigate the footwell interaction of the lower extremities in frontal crashes in automated vehicles.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 28.02.2021
Ende: 30.12.2021
The analysis of atrificial cell aging and the influence on the battery performance is the goal of this scientific research project, as well as the safety-critical evaluation during battery cycling under extreme environmental conditions.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2020
Ende: 30.12.2021
The aim of the project is the investigation of test procedures to evaluate the partner protection of cars concerning powered 2-wheelers.
Mitarbeiter*innen
Projektleiter/in an der OE
Christoph Leo
Dipl.-Ing. Dr.techn. BSc
Beginn: 31.08.2021
Ende: 30.12.2021
The aim of this research project is to provide the basis for designing the actuator in terms of movement and reaction forces from experiments.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 30.11.2021
Ende: 30.12.2021
In this project, the effect of the vehicle's center of gravity position on the vehicle exit trajectory after the vehicle has crashed into a temporary guiding device is investigated.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 30.11.2021
Ende: 30.12.2021
The objective of this project is to answer the research question to what extent the characteristics of accidents with personal injury are comparable to accidents with property damage.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2021
Ende: 29.11.2021
In the present research project, the influence of different element lengths of guiding devices on their retention properties will be scientifically investigated.
Mitarbeiter*innen
Projektleiter/in an der OE
Nico Erlinger
Dipl.-Ing. BSc
Beginn: 30.09.2021
Ende: 29.11.2021
The aim of this research project is to use virtual methods to evaluate customer and crash relevant functions of a harness system in an early project phase with high predictive quality.
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.11.2018
Ende: 29.11.2021
The aim of this scientific research project is to explore the sensitivity of different influencing variables to head and spine loads.
Mitarbeiter*innen
Projektleiter/in an der OE
Eva Heider
Dipl.-Ing. BSc BSc
Beginn: 31.07.2021
Ende: 30.10.2021
Development of a procedure to improve comparability of Human Body Model simulations in pedestrian protection assessments.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2020
Ende: 29.09.2021
In the present research project, a preliminary study is being conducted on the securing of occupants in wheelchairs. The kinematics of the occupants in selected load cases and under consideration of the geometric boundary conditions will be investigated. Through this procedure, test configurations for subsequent sled tests are derived.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.05.2021
Ende: 29.09.2021
The aim of this research project is to scientifically investigate the performance of a occupant restraint system using human body models.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 31.07.2021
Ende: 29.09.2021
The aim of this research project is to perform innovative research shock tests for predefined deceleration periods beyond current safety standards to assess the safety performance and functionality of the new concept with higher critical loadings than state-of-the-art test configurations.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2021
Ende: 29.09.2021
The aim of the project is to study the behaviour of pedestrian in the pre- and incrash phase.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.09.2018
Ende: 29.09.2021
In the research project "Bio!Floor", birch plywoods are characterized mechanically, taking into account strain rate and temperature effects.
Mitarbeiter*innen
Projektleiter/in an der OE
Florian Feist
Dipl.-Ing. Dr.techn.
Beginn: 28.02.2021
Ende: 30.08.2021
The objective of this scientific research project is the mechanical characterization of fresh and aged battery cells and mini-modules through innovative validation tests for numerical simulation models.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 30.06.2021
Ende: 30.08.2021
The analysis of the behavior of innovative battery cells/modules in crash load cases respectively the representation in a numerical simulation program is important to gain essential information to ensure the safety of electric vehicles for defined crash load cases. Physical tests on component, cell, and module level are a crucial factor to perform a mechanical characterization and thus to validate simulation models. The aim of this research project is to investigate and characterize the mechanical behavior of an innovative lithium-ion cell in a crash load case and to develop a finite element simulation model of this cell.
Mitarbeiter*innen
Projektleiter/in an der OE
Marco Raffler
Dipl.-Ing. BSc
Beginn: 28.02.2021
Ende: 30.07.2021
The aim of this scientific investigation is the analysis of the functionality of an emergency exit in a vehicle restraint system.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 31.05.2021
Ende: 30.07.2021
Ziel dieses wissenschaftlichen Forschungsprojektes ist die mechanische Charakterisierung von geladenen Batteriezellenkonzepten mit quasistatischen Lasten.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 30.06.2021
Ende: 30.07.2021
The objective of this research project is to assess the effects of different speeds to road safety with simulation.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.11.2020
Ende: 29.06.2021
The aim of this research project is to improve the safety of electric vehicles by means of highly dynamic battery tests.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 30.04.2021
Ende: 29.06.2021
The aim of this scientific research project is to determine the thermal conductivity and properties of Li-Ion Pouch Cell.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.03.2021
Ende: 29.06.2021
The goal of SafeBattery is to investigate the mechanical, electrochemical and chemical-thermodynamic behaviour including a hazard quantification of lithium-based single-cell and single modules under crash loads (acceleration and deformation) taking into account product life, i.e. the mechanical and chemical changes that take place over product life.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in bei Kooperationen mit externen Organisationen
Christian Ellersdorfer
Assoc.Prof. Dipl.-Ing. Dr.techn.
Projektleiter/in an der OE
Martin Wilkening
Univ.-Prof. Dr.rer.nat.
Beginn: 31.03.2017
Ende: 30.05.2021
OSCCAR uses a comprehensive integrated approach for the development of future advanced occupant protection systems. It will provide a unique human body model (HBM)-based development and assessment framework, covering main challenges of future road safety due to the introduction of highly automated vehicles as well as changes in demographics. Based on the analysis of future relevant accident scenarios and considering new, highly automated vehicles (HAVs) enabled sitting positions, advanced occupant protection principles will be developed and demonstrated. These require assessment with improved HBMs (omni-directionally biofidelic, active and robust), considering gender and demographic factors as well as improved soft tissues material properties.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.05.2018
Ende: 30.05.2021
Alternative propulsion systems, including battery-electric vehicles, are becoming more prevalent. Whilst such vehicles remain a small overall proportion of the vehicle fleet, the combination of impacts of Government policy and technological advances in alternative fuels is expected to accelerate their increase in numbers on the road and in tunnels in coming years. As a result of these changes, the nature of tunnel safety risk (including from fire) is expected to change with time and detailed consideration of the risk of significant incidents involving such vehicles is required. This should include the evaluation of incident consequences with particular attention paid to fire characteristics and toxic emissions and their impact on tunnel users and on emergency intervention strategies. This project collates currently available information on these issues, and will contribute strongly to future development.
Mitarbeiter*innen
Projektleiter/in an der OE
Simon Franz Heindl
Dipl.-Ing.
Peter-Johann Sturm
Ao.Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.05.2019
Ende: 30.05.2021
The aim of this project is to investigate the mechanical behaviour in combination with the electrical failure under dynamic mechanical load. The obtained measurement data will provide important input for simulation models.
Mitarbeiter*innen
Projektleiter/in an der OE
Georg Baumann
Dipl.-Ing. BSc
Beginn: 31.10.2020
Ende: 30.03.2021
The vision of the K-Project WoodCAR (Wood – Computer Aided Research) is to introduce Engineered Wood Products (EWP), Engineered Wood Components (EWC) and wood-based materials to the mobility sector, which follows the demand for improvement of environmental and economic sustainable materials in this branch.
Mitarbeiter*innen
Projektleiter/in an der OE
Florian Feist
Dipl.-Ing. Dr.techn.
Beginn: 28.02.2017
Ende: 27.02.2021
The aim of this research project is to further develop and improve application methods on lithium-ion cells.
Mitarbeiter*innen
Projektleiter/in an der OE
Luigi Aiello
Dott. mag.
Beginn: 31.01.2021
Ende: 27.02.2021
In this research project, the behavior of innovative suspension under specific impact loads is scientifically investigated. These analyzes provide important insights in the key-research area of the Vehicle Safety Institute "Virtual and Physical Testing".
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2019
Ende: 30.12.2020
The aim of the project is the investigation of test procedures to evaluate the partner protection of cars concerning powered 2-wheelers.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.10.2020
Ende: 30.12.2020
Development of protocols and procedures for evaluating passive vehicle safety via virtual testing.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.10.2020
Ende: 30.12.2020
The aim of this project is the scientific development of recommendations for action for critical transitions from steel restraint systems to precast concrete elements in existing buildings with the aim of increasing safety in the event of a vehicle impact.
Mitarbeiter*innen
Projektleiter/in an der OE
Desiree Kofler
Dipl.-Ing. BSc
Beginn: 31.03.2020
Ende: 30.12.2020
Analyses show that serious injuries frequently occur in accidents while skiing, snowboarding and sledging. In order to show which forces act on the human body in winter sports accidents and which injuries can occur, simulations with human body models are carried out in the project “SCHNEE”. The focus in this project is to analyse sledging accidents.
Mitarbeiter*innen
Projektleiter/in an der OE
Stefan Smit
Dipl.-Ing. BSc
Beginn: 31.08.2020
Ende: 30.12.2020
The goal of the research project is to develop an intelligent design of experiment for occupant simulations, as well as the knowledge of factors influencing occupant loads.
Mitarbeiter*innen
Projektleiter/in an der OE
Bernd Schneider
Dipl.-Ing.
Beginn: 31.08.2020
Ende: 30.12.2020
The aim of this research project is to develop a new recovery system for bungy systems - with focus on the end of the rope.
Mitarbeiter*innen
Projektleiter/in an der OE
Florian Feist
Dipl.-Ing. Dr.techn.
Beginn: 31.05.2020
Ende: 29.11.2020
The aim of this research project is the evaluation of the behavior of charged battery cells under quasi-static load to analyze the mechanical load limit.
Mitarbeiter*innen
Projektleiter/in an der OE
Alessio Sevarin
Dott. mag.
Beginn: 31.10.2020
Ende: 29.11.2020
Crash cushions are used to protect road users when errant vehicles are going to collide with rigid objects (e.g. lay-bys, tunnel portals, etc.). To install crash cush-ions on roads they need to fulfil the requirements of the EN 1317 which define the test specifications. However, in the EN 1317 it is not requested to use state-of-the-art vehicles i.e. the vehicles do not necessarily need to have state-of-the-art equipment such as airbags, pretensioner, etc. It is assumed that occupants in vehi-cles with a proper safety equipment have a lower risk of injuries than occupants in vehicles, which only meets the criterions of EN 1317.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2019
Ende: 29.11.2020
The objective of this research project is the scientific evaluation of different methods to position traffic cones on motorways to protect construction sites, which have the lowest risk for the road workers. The injury risk in the event of a collision is assessed by simulation.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.06.2020
Ende: 29.11.2020
The aim of this research project is a detailed analysis of selected seat characteristics for automated vehicles with regard to occupant protection.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 30.04.2020
Ende: 29.10.2020
The aim of this research project is the analysis of Simulations with Human Body Models for the pedestrian protection assessment of cars.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.09.2020
Ende: 29.10.2020
The aim of this research project is to perform new impactor tests to characterize the material properties of battery prototypes with a state of charge of 100%.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2020
Ende: 29.10.2020
The aim of this research project is to develop and perform innovative deceleration tests to investigate the mechanical behaviour of charged prototype battery packs with at least 300g.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2020
Ende: 29.09.2020
The aim of this research project is the development of a value chain in the field of "wood in vehicle and mechanical engineering".
Mitarbeiter*innen
Projektleiter/in an der OE
Florian Feist
Dipl.-Ing. Dr.techn.
Beginn: 30.04.2019
Ende: 29.06.2020
In the research project PERTA the passive safety of selected road equipment objects shall be checked. It is examined under scientific aspects, whether the protection of individual objects is absolutely necessary.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.04.2018
Ende: 29.04.2020
This research project can be understood as a “demonstrator” to firstly check potential in usage and secondly unveil and solve possible difficulties the might come with the use of the Global Human Body Model (GHBM) .
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2019
Ende: 30.03.2020
In order to analyze the influence onto the occupant response, novel side airbag models are integrated in an existing sub subsystem model.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.01.2020
Ende: 30.03.2020
The aim of the project is a multimodal land development of rural and suburban regions, which is more economic and attractive than the conventional combination of public transport with Park & Ride, Bike & Ride or walking, and more ecologically and socially acceptable than the sole use of motorized private.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in bei Kooperationen mit externen Organisationen
N.N. N.N.
Projektleiter/in an der OE
Edwin Christoph Klein
Dipl.-Ing. Dr.techn.
Christoph Leo
Dipl.-Ing. Dr.techn. BSc
Beginn: 28.02.2017
Ende: 28.02.2020
The aim of this project is to develop a test program for the objective determination of the properties of motorcycle cornering braking systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 28.02.2018
Ende: 27.02.2020
The aim of this research project is the analysis of Simulations with Human Body Models for the pedestrian protection assessment of cars.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2018
Ende: 30.12.2019
In this research project, the behavior of innovative suspension under specific impact loads is scientifically investigated. These analyzes provide important insights in the key-research area of the Vehicle Safety Institute "Virtual and Physical Testing".
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2018
Ende: 30.12.2019
The central research question of this project focuses on the investigation of the restraint capability of future vehicle seats including seat-based restraint systems in subject to the direction of load, severity of accidents and seat adjustments as well as the derivation of requirements for future interior sensing and monitoring systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.12.2018
Ende: 30.12.2019
The aim of this project is the in-depth analysis of the fundamental functional principles essential for occupant safety in a theoretical future vehicle concept.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 30.04.2019
Ende: 30.12.2019
The aim is to optimize the vehicle traction battery by using new materials by means of new construction design and also by a fusion of components of a battery pack which fulfill a very similar function.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in bei Kooperationen mit externen Organisationen
Christian Ellersdorfer
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2016
Ende: 30.12.2019
The objective of this research project is the scientific evaluation of experimental data.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in bei Kooperationen mit externen Organisationen
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.05.2019
Ende: 30.12.2019
The aim of this research project is to assess state-of-the-art restraint systems for the new application case of new interiors and to develop new restraint principles in a virtual environment and to evaluate their protection potential for operation in highly automated vehicles.
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.08.2019
Ende: 30.12.2019
The crash capability is simulated in the virtual test.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.08.2019
Ende: 30.12.2019
The aim of this research project is the automation and optimization of the method for transfer to operational use.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2019
Ende: 30.12.2019
The aim of this research project is the development of an objective evalulatioN of occupant kinematics In simulations.
Mitarbeiter*innen
Projektleiter/in an der OE
Bernd Schneider
Dipl.-Ing.
Beginn: 31.10.2019
Ende: 30.12.2019
The aim of this research project is the analysis of the behavior of Li-ion battery under mechanical abuse load cases.
Mitarbeiter*innen
Projektleiter/in an der OE
Alessio Sevarin
Dott. mag.
Beginn: 30.11.2019
Ende: 30.12.2019
The aim of this research project is to investigate the mechanical behavior of busbars in combination with electrical failure or to characterize these components in order to provide important input for simulation models.
Mitarbeiter*innen
Projektleiter/in an der OE
Christian Ellersdorfer
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.05.2019
Ende: 29.10.2019
The aim of this project is to get through the combination of two simulation models (traffic flow simulation and accident simulation) to a new holistic traffic simulation method.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in bei Kooperationen mit externen Organisationen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Projektleiter/in an der OE
Horst Bischof
Univ.-Prof. Dipl.-Ing. Dr.techn.
Martin Fellendorf
Univ.-Prof. Dr.-Ing.
Beginn: 30.09.2016
Ende: 29.09.2019
The aim of this research project is the development of a new scientific method for the calculation of previously incomputable additional quantities directly from real measurement data of child dummies in crash tests.
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.07.2018
Ende: 30.07.2019
The aim of this research-project is to evaluate and improve methods for the assessment of Vulnerable Road User protection. The scope of research is to better understand injury mechanisms and kinematics in VRU accidents.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.07.2018
Ende: 30.07.2019
The aim of this research project is to investigate the risk of injury of ski jumpers on artificial ski jumps.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 28.02.2019
Ende: 29.06.2019
The aim of this project is to develop a tool for a risk/benefit analysis for different passive safety systems in different side impact scenarios.
Mitarbeiter*innen
Projektleiter/in an der OE
Stefan Smit
Dipl.-Ing. BSc
Beginn: 30.04.2018
Ende: 29.04.2019
The aim of this research project is the simulation-based assessment of the risk potential for vehicles running off the road by executing flat-boarding on drainage pits on motorways and expressways.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 28.02.2019
Ende: 29.04.2019
In this research project, the behavior of innovative suspension under specific impact loads is scientifically investigated. These analyzes provide important insights in the key-research area of the Vehicle Safety Institute "Virtual and Physical Testing".
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2018
Ende: 29.03.2019
Mechanical and electrochemical investigations of Li-ion batteries.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in von mehreren TU Graz Instituten
Simon Franz Heindl
Dipl.-Ing.
Projektleiter/in an der OE
Martin Wilkening
Univ.-Prof. Dr.rer.nat.
Beginn: 31.01.2017
Ende: 30.01.2019
The aim of this project is the determination of the effects of new seating positions on occupants and the corresponding requirements for occupant restraint systems in passenger cars.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 31.12.2017
Ende: 30.12.2018
“The aim of this project is the determination of the effects of new seating positions on occupants and the corresponding requirements for occupant restraint systems in trucks.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 31.03.2018
Ende: 30.12.2018
The aim of this project is the determination of the effects of new seating positions on occupants and the corresponding requirements for occupant restraint systems in vans.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 31.12.2017
Ende: 30.12.2018
Development of a procedure as evidence for the reproducibility and comparability of a specific Human Body Model.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.07.2018
Ende: 30.12.2018
Development of a procedure as evidence for the reproducibility and comparability of a specific Human Body Model.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.07.2018
Ende: 30.12.2018
This project aims to enable the analysis of road traffic accidents to development an evaluation methodology to determine the criticality of traffic accidents.
Mitarbeiter*innen
Projektleiter/in an der OE
Martin Weinberger
Dipl.-Ing. BSc
Beginn: 31.03.2016
Ende: 30.12.2018
The aim of this project is the determination of the effects of new seating positions on occupants and the corresponding requirements for occupant restraint systems in passenger cars.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 31.12.2017
Ende: 30.12.2018
Development of a method to verify the pelvis kinematics, Analysis of further targets to improve the quality of the determination process.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2018
Ende: 30.12.2018
The central research question of this project focuses on the investigation of the restraint capability of future vehicle seats including seat-based restraint systems in subject to the direction of load, severity of accidents and seat adjustments as well as the derivation of requirements for future interior sensing and monitoring systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 30.09.2018
Ende: 30.12.2018
In this research project, the behavior of innovative suspension under impact loads is scientifically investigated. These analyzes provide important insights in the key-research area of the Vehicle Safety Institute "Virtual and Physical Testing".
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.09.2018
Ende: 30.12.2018
Aim oft his preliminary study is the definition of requirements concerning effects of fires and requirements for fire fighting of battery driven electrical vehicles.
Mitarbeiter*innen
Projektleiter/in an der OE
Simon Franz Heindl
Dipl.-Ing.
Peter-Johann Sturm
Ao.Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.08.2018
Ende: 30.12.2018
The reasons for "tuning" the mopeds are raised, whereby access to the target group is to be facilitated by the fact that young people are involved in the provision of information and design. Since young people are communicating at an equal level ("young people ask young people" - peer group approach), a corresponding feedback should be obtained and a well-founded evaluation possible. The possibilities of "tuning" are raised and the consequences on case studies are shown. In doing so, documents are to be developed which can be used both in teaching (physics, mathematics, etc.), as well as in education, training and public relations. By collecting and highlighting the risks relevant to safety as well as the legal consequences, not only the young people but also the adults are to be sensitized to the topic.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2016
Ende: 30.12.2018
Within a sensitivity study, it is investigated which measures could have prevented injuries in the case of accidents. The results are used to derive improvements for consumer protection and provide recommendations for the minimum personal protective equipment.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in bei Kooperationen mit externen Organisationen
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2016
Ende: 30.12.2018
Traffic safety through collision warning driving assistance systems in trucks - Assessment of the effectiveness in conflicts with pedestrians.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.04.2017
Ende: 30.10.2018
The project goal is to calculate a guardrail with underrun protection and to evaluate its influence.
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.01.2018
Ende: 29.10.2018
The main focus of this project is the vehicle-specific observation and analysis (vehicle dynamics of different types of vehicles) in the course of an RSI or RSA, in order to meet all road users equally.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2016
Ende: 29.09.2018
The aim of this project is the detailed analysis of junctions scenarios based ond real accidents.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2017
Ende: 29.09.2018
According to the currently presented concept studies by car manufacturers, future vehicle developments addressing autonomous functionality offers the occupant more freedom in terms of positioning options in the passenger compartment. The whole seat can be moved under certain restrictions in an extended area compared to actual vehicles. Rotations around the z-axis are also considered. These freedoms of design for the interior concepts raise new, interesting research questions. The research topic addresses a feasibility and benefit assessment of new restraint systems in the context of greater freedoms in the interior of autonomous vehicles. The focus is set on the development of new simulation methods for the evaluation of these systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.05.2018
Ende: 29.09.2018
According to the currently presented concept studies by car manufacturers, future vehicle developments addressing autonomous functionality offers the occupant more freedom in terms of positioning options in the passenger compartment. The whole seat can be moved under certain restrictions in an extended area compared to actual vehicles. Rotations around the z-axis are also considered. These freedoms of design for the interior concepts raise new, interesting research questions. The research topic addresses a feasibility and benefit assessment of new restraint systems in the context of greater freedoms in the interior of autonomous vehicles. The focus is set on the development of new simulation methods for the evaluation of these systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.05.2018
Ende: 29.09.2018
At first relevant accident types are assessed according to Statistics Austria. In an in-depth analysis of the accident database CEDATU these accident types are enhanced by further parameters, e.g. velocities, reaction times, trajectory, etc. to define detailed scenarios. These identified scenarios will be simulated under the assumption that the two-wheeler is equipped with an ARAS. The driving license education scenarios are compared with the identified scenarios from the in-depth analysis and, if appropriate, extended. The scenarios will be evaluated by two-wheelers with and without ARAS. At the same time, the settings of two-wheel-linkers are raised to risks and their acceptance, as well as use of ARAS (focus groups, online survey). The calculation of the benefit of ARAS as well as recommendations are made from a totals evaluation (simulation, driving course, survey).
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2016
Ende: 29.09.2018
Development of a procedure as evidence for the reproducibility and comparability of a specific Human Body Model.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 28.02.2018
Ende: 29.06.2018
Model modification and method adaptation of SimbaV to expand the determination by additional dummymodels.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 30.04.2018
Ende: 29.06.2018
According to the currently presented concept studies by car manufacturers, future vehicle developments addressing autonomous functionality offers the occupant more freedom in terms of positioning options in the passenger compartment. The whole seat can be moved under certain restrictions in an extended area compared to actual vehicles. Rotations around the z-axis are also considered. These freedoms of design for the interior concepts raise new, interesting research questions. The research topic addresses a feasibility and benefit assessment of new restraint systems in the context of greater freedoms in the interior of autonomous vehicles. The focus is set on the development of new simulation methods for the evaluation of these systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.03.2018
Ende: 29.06.2018
The objective of this research project is to develop methods that allow to generate additional information directly from crash test data requiring only little effort. This additional information can be used to perform test analysis in higher detail as well as to support simulation validation. The primary research focus of this project is placed on the THOR-50M dummy respectively the relationship between restraint systems and dummy kinematics.
Mitarbeiter*innen
Projektleiter/in an der OE
Harald Kolk
Dipl.-Ing. BSc
Beginn: 31.03.2017
Ende: 30.05.2018
The aim of this project is to perform quasi static test with battery cells for two battery types.
Mitarbeiter*innen
Projektleiter/in an der OE
Marco Raffler
Dipl.-Ing. BSc
Beginn: 31.03.2018
Ende: 30.05.2018
Within the project a feasibility study on methods for analysing effects on occupant kinematics will be performed.
Mitarbeiter*innen
Projektleiter/in an der OE
Nisha Nandlal Sharma
B.Eng. M.Eng.
Beginn: 31.01.2018
Ende: 29.04.2018
The aim of the project is the analysis of Li-Ion batteries under heavy loads.
Mitarbeiter*innen
Projektleiter/in an der OE
Alessio Sevarin
Dott. mag.
Beginn: 31.03.2018
Ende: 29.04.2018
The aim of the project is to generate video and test data based provided by crash tests on chassis systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 28.02.2018
Ende: 29.04.2018
Development of a simplified simulation tool for the analysis of the injury risk of far-side occupants in lateral collisions.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.03.2017
Ende: 30.03.2018
The aim of the project is to reduce the calculation times of the M-K model.
Mitarbeiter*innen
Projektleiter/in an der OE
Bernd Schneider
Dipl.-Ing.
Beginn: 31.12.2017
Ende: 30.03.2018
Model modification and method adaptation of SimbaV to expand the determination by additional dummymodels.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.01.2018
Ende: 30.03.2018
The aim of this study is to test the energy absorbing behavior of crashtubes for impact absorbers at the VSI crash facility.
Mitarbeiter*innen
Projektleiter/in an der OE
Simon Franz Heindl
Dipl.-Ing.
Beginn: 28.02.2018
Ende: 30.03.2018
Extension of the SSM-tools with the WSID-dummy.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.03.2017
Ende: 30.03.2018
The aim of this project is to perform quasi static test with battery cells for two battery types.
Mitarbeiter*innen
Projektleiter/in an der OE
Marco Raffler
Dipl.-Ing. BSc
Beginn: 31.12.2017
Ende: 27.02.2018
The project tries to identify relevant unavoidable future accident scenarios. Based on these scenarios, the requirements for occupant restraint systems with regard to novel occupant sitting positions are determined.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 28.02.2017
Ende: 27.02.2018
The project tries to identify relevant unavoidable future accident scenarios. Based on these scenarios, the requirements for occupant restraint systems with regard to novel occupant sitting positions are determined.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 28.02.2017
Ende: 27.02.2018
Investigation of vibration noise in seat belts in the vehicle.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in bei Kooperationen mit externen Organisationen
Josef Girstmair
Dipl.-Ing. Dr.techn.
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.10.2016
Ende: 30.12.2017
The aim of this project is to apply the method developed in phases 1 and 2 to another vehicle model.
Mitarbeiter*innen
Projektleiter/in an der OE
Florian Feist
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2017
Ende: 30.12.2017
In this project, simplified motorcycle models are created to simulate different load cases and to derive generic crash pulses.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.07.2017
Ende: 30.12.2017
The aim of this project is to compare innovative and conventionell solutions for an occupant restraint concept for the fire-fighting vehicle of the future.
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 30.06.2017
Ende: 30.12.2017
Integrated safety systems gaining more importance in the area of occupant protection. Due to the introduction of pre-crash measures (for example: AEB) an occupant forward movement is likely. In those cases the occupant is at t0 not in the intended "standard sitting position" as defined in the norms. Additionally a deviating positon of the occupant can also be seen by changing the seat position relatively to the vehcile which are as outside the norm specifications. Actual restraint systems are not developed for all combinations of those occupant and seat movements and are not defined in the relevant testing procedures. The questions that arise are: What benefits can be expected with respect to the occupant restraint systems if the corresponding logic (for example occupant weight) is modified before t0, due to specific occupant positions? What are the requirements for future integrated safety systems?
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 30.09.2017
Ende: 30.12.2017
The aim of this study is the analysis of the potential of adaptive restraint systems. In the course of this project novel, generic trigger algorithms for different load cases are evaluated.
Mitarbeiter*innen
Projektleiter/in an der OE
Felix Ressi
Dipl.-Ing. Dr.techn. BSc
Beginn: 28.02.2017
Ende: 30.12.2017
Model modification and method adaptation of SimbaV to expand the determination by additional dummymodels.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2017
Ende: 30.12.2017
The aim of this project is to investigate the pre-crash interaction between vehicle occupants and vehicle environment.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2016
Ende: 30.12.2017
The aim of the project is to reduce the calculation times of the M-K model.
Mitarbeiter*innen
Projektleiter/in an der OE
Bernd Schneider
Dipl.-Ing.
Beginn: 31.03.2017
Ende: 30.12.2017
The aim of the project is to generate video and test data based provided by crash tests on chassis systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.08.2017
Ende: 30.12.2017
Objective is the effectiveness analysis of driver assistance systems for commercial vehicles.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in bei Kooperationen mit externen Organisationen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.06.2016
Ende: 30.12.2017
Content and objective of this research project is the analysis of the current standard in 3-dimensional infrastructure planning. A method is developed to optimize the 3D planning taking into account vehicle dynamics.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.06.2016
Ende: 30.12.2017
The aim of this project is the Investigation of mechanical and electrical effects with regard to Lithium-Ion energy storage systems with flammable electrolyte.
Mitarbeiter*innen
Projektleiter/in an der OE
Christian Ellersdorfer
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 24.11.2016
Ende: 29.11.2017
Requirements for the identification of accident situations and avoidance potential of safety systems at junctions.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2017
Ende: 30.10.2017
Integrated safety systems gaining more importance in the area of occupant protection. Due to the introduction of pre-crash measures (for example: AEB) an occupant forward movement is likely. In those cases the occupant is at t0 not in the intended "standard sitting position" as defined in the norms. Additionally a deviating positon of the occupant can also be seen by changing the seat position relatively to the vehcile which are as outside the norm specifications. Actual restraint systems are not developed for all combinations of those occupant and seat movements and are not defined in the relevant testing procedures. The questions that arise are: What benefits can be expected with respect to the occupant restraint systems if the corresponding logic (for example occupant weight) is modified before t0, due to specific occupant positions? What are the requirements for future integrated safety systems?
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.12.2016
Ende: 30.10.2017
Aim of the project is to identify the potential of vehicle crash structures.
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.01.2017
Ende: 30.10.2017
In this research project, the relevant factors for a safe integration of electric drive concepts in the vehicle body will be investigated and new development methods will be elaborated. In this research, particular attention will be paid on the components with a relevant structural function.
Mitarbeiter*innen
Projektleiter/in an der OE
Christian Ellersdorfer
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.09.2015
Ende: 29.09.2017
The aim ot the project is the improvement of Pedestrian Protection Test Standards Concerning Pelvis Injuries.
Mitarbeiter*innen
Projektleiter/in an der OE
Florian Feist
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2016
Ende: 29.09.2017
The goal of this project is to identify different safety measures before tunnel niches and tunnel abutments to minimize the risk of injury to the occupants in the vehicle impacts on the basis of finite element simulations and real tests considering different impact angles from theoretical considerations and accident data.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in bei Kooperationen mit externen Organisationen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2016
Ende: 30.08.2017
The aim of the project is to generate video and test data based provided by crash tests on chassis systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.05.2017
Ende: 30.07.2017
The overall objective is the descriptive analysis of national statistics, the identification of relevant scenarios which currently are not covered by standard tests.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.03.2017
Ende: 30.07.2017
The aim of this project is to support the preparation of specific work instructions or parts of submission documents for the handling and storage of lithium-ion batteries.
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.04.2017
Ende: 29.06.2017
Development of a procedure as evidence for the reproducibility and comparability of a specific Human Body Model.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2016
Ende: 29.06.2017
The aim of the project is the verification of the transferability of the SimbaV principle for the determination of thoracic kinematics from selected dummy models using the 3D film evaluation.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.03.2017
Ende: 29.06.2017
Simulation of park-assistent: trajectory planning and tracking.
Mitarbeiter*innen
Projektleiter/in an der OE
Christian Ellersdorfer
Assoc.Prof. Dipl.-Ing. Dr.techn.
Martin Horn
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 14.08.2016
Ende: 15.06.2017
Integrated vehicle safety is the combination of active and passive safety measures. For the design of new integrated safety systems no normative or standardized virtual tools to evaluate effectiveness are available. The integration of various systems requires an interdisciplinary view on driver, vehicle, and environment, as well as the development of multidisciplinary simulation method and processes. A key tool within these multidisciplinary activities is the co-simulation, which combines various tool and models to describe the characteristics of the interconnected system.
Mitarbeiter*innen
Projektleiter/in an der OE
Florian Feist
Dipl.-Ing. Dr.techn.
Beginn: 30.11.2014
Ende: 30.05.2017
The aim of the project is the analysis of motorway accidents with passenger car participation on the basis of the accident database.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.01.2017
Ende: 30.05.2017
Technical report for the protection of children with physical impairment during school transport.
Mitarbeiter*innen
Projektleiter/in an der OE
Florian Feist
Dipl.-Ing. Dr.techn.
Beginn: 31.03.2017
Ende: 29.04.2017
The thermal runaway (TR) process of lithium ion cells is not well understood. This project develops methods to evaluate this TR-process and performs an empiric upscaling to big automotive cells and small modules.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.04.2014
Ende: 29.04.2017
In passenger cars integral vehicle safety systems for pedestrian protection gain importance. Mitigating the consequences of primary impact does not suffice. To further reduce injury riks, the secondary impact has to be considered. In numerical simulations, though, studying the secondary impact is not straightforward due to its high demands in resources. In Brief Phase 01 methods have been developed to reduce CPU costs in long-duration simulations (2500 ms). Total CPU time was reduced considerably to approx. 1/3, still one calculation takes approx. 7 days. In Phase 02 the time-costs for calculation shall be further reduced, to enable parameter studies.
Mitarbeiter*innen
Projektleiter/in an der OE
Florian Feist
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2016
Ende: 29.04.2017
Development of a methodology for the transferability of the SimbaV principle to determine the thoracic kinematics of another dummy.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2016
Ende: 29.04.2017
The aim of the project is the analysis of motorway accidents with passenger car participation on the basis of the accident database.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 28.02.2017
Ende: 29.04.2017
Creation of simulation model for pre-development of side crash-structure.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2016
Ende: 30.03.2017
The aim of this study is to test the energy absorbing behavior of crashtubes for impact absorbers at the VSI crash facility.
Mitarbeiter*innen
Projektleiter/in an der OE
Simon Franz Heindl
Dipl.-Ing.
Beginn: 30.11.2016
Ende: 27.02.2017
Currently electric energy storage systems (EES) of electric motorcycles are designed in a way, that mechanical loading (crash loading, impact loads in driving cycles, ...) doesnt lead to any cell deformation, to prevent a thermal runaway of battery cells under any circumstances, which can, in worst case scenarios, lead to fire or even explosion. However, since battery cells, used in motorcycles today, do allow for a certain amount of deformation, without dangerous damage, depending on the direction of loading, EES could be designed significantly less robust and thus lighter in weight and less cost intense. Due to this fact, within this research project, the theoretical cost and weight saving potential dependant of permitted uncritical deformations shall be determined. For this purpose a parametric finite element model of a generic EES concept will be optimised, using optimisation tools for explicit finite element methods, with respect to a complex target function (manufacturing costs, material costs, ) for a well-known load spectrum. Results from this project are important informations for strategic decisions whether future EES-concepts for all different kinds of motorcycle classes shall be designed in a way to allow a certain uncritical amount of deformation in order to safe weight and costs while maintaining a sufficient safety margin.
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in von mehreren TU Graz Instituten
Christian Ellersdorfer
Assoc.Prof. Dipl.-Ing. Dr.techn.
Projektleiter/in an der OE
Thomas Böhm
Dipl.-Ing. BA
Beginn: 31.12.2014
Ende: 30.12.2016
The aim of this project is to determine the rigid body trajectories from experimental data
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 30.06.2016
Ende: 30.12.2016
Development of a simplified simulation model for a crash-simulation of frontal collisions.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2016
Ende: 30.12.2016
Development of a procedure as evidence for the reproducibility and comparability of a specific Human Body Model.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.09.2016
Ende: 30.12.2016
Development of a methodology for the transferability of the SimbaV principle to determine the thoracic kinematics of another dummy.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2016
Ende: 30.12.2016
Integrated safety systems gaining more importance in the area of occupant protection. Due to the introduction of pre-crash measures (for example: AEB) an occupant forward movement is likely. In those cases the occupant is at t0 not in the intended "standard sitting position" as defined in the norms. Additionally a deviating positon of the occupant can also be seen by changing the seat position relatively to the vehcile which are as outside the norm specifications. Actual restraint systems are not developed for all combinations of those occupant and seat movements and are not defined in the relevant testing procedures. The questions that arise are: What benefits can be expected with respect to the occupant restraint systems if the corresponding logic (for example occupant weight) is modified before t0, due to specific occupant positions? What are the requirements for future integrated safety systems?
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 16.11.2016
Ende: 30.12.2016
The objective of this research project is to develop methods that allow to generate additional information directly from crash test data requiring only little effort. This additional information can be used to perform test analysis in higher detail as well as to support simulation validation.
Mitarbeiter*innen
Projektleiter/in an der OE
Harald Kolk
Dipl.-Ing. BSc
Beginn: 31.01.2016
Ende: 29.11.2016
The aim of this project is to characterize the mechanical behaviour of high-voltage cells.
Mitarbeiter*innen
Projektleiter/in an der OE
Simon Franz Heindl
Dipl.-Ing.
Beginn: 30.06.2016
Ende: 29.11.2016
Development of a test concept for a comparative assessment of crash absorber devices for ski- and motor racing. The project is subdivided into three main work packages: WP1: Literature research and accident analysis; WP2: Development of a testing concept; WP3: Proof of concept based on experiments and an impact intensity assessment.
Mitarbeiter*innen
Projektleiter/in an der OE
Simon Franz Heindl
Dipl.-Ing.
Beginn: 30.06.2016
Ende: 29.11.2016
Requirements for the identification of accident situations and avoidance potential of safety systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2016
Ende: 29.11.2016
Assessment of road safety transitions when impacted by a vehicle.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2016
Ende: 30.10.2016
Small Electric Passenger vehicle with maximized Safety and Integrating a Lightweight Oriented Novel body architecture.
Mitarbeiter*innen
Projektleiter/in an der OE
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.10.2013
Ende: 29.10.2016
Bausteine für Integrale Sicherheitssimulation
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.01.2012
Ende: 29.09.2016
It is estimated that 90 million people around the world currently suffer from some form of spinal cord injury. In two thirds of cases, road accidents are the cause of injury, with sporting accidents making up another 10% of the total. The cervical spine is a complex anatomical region. Its primary function is to provide head support and mobility as well as protection of the spinal cord. In order to understand the mechanism of injury and injury quantification, the human neck model must provide a reliable simulation of the head movement in relation to the chest as well as simulation of loads and stresses in cervical spine structures. For a reliable determination of the injury occurrence, it is important that the description of the nonlinear material behaviour be as realistic as possible, particularly in case of the tissues subject to impact conditions. The project focuses on the modelling of anatomical structures of the cervical spine in Finite Element.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Andreas Johann Gutsche
Dipl.-Ing.
Beginn: 30.09.2013
Ende: 29.09.2016
Sensitivity analysis of occupant posture at t0 on the injury risk in a selected crash load case for the purpose of functional validation of integral occupant protection systems Beschreibung: A reliable procedure for functional validation is key for evaluating the protection afforded by integral occupant protection systems already at an early stage of development. In state-of-the-art validation procedures the occupant is seated in a ‘standard position’ at t0, which makes functional validation straightforward and assessable through conventional and well-established experimental methods like crash tests. A functional validation for non-standard seating postures at t0 through conventional methods, though, is not feasible. The aim of this project is to establish a method which is able to assign criticality to initial occupant postures. Eventually the method will form the basis for the functional validation of integral occupant protection systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.10.2015
Ende: 30.08.2016
The aim of the project is to generate video and test data based provided by crash tests on chassis systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.07.2016
Ende: 30.08.2016
Development of appropriate measures to improve pedestrian safety of elderly through behavioral observation and in-depth analysis of real accidents
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in bei Kooperationen mit externen Organisationen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2014
Ende: 29.06.2016
The aim of this project is to determine the rigid body trajectories from experimental data
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2015
Ende: 29.06.2016
The overall objective is the descriptive analysis of national statistics, the identification of relevant scenarios which currently are not covered by standard tests
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.11.2015
Ende: 30.05.2016
Development of a procedure as evidence for the reproducibility and comparability of a specific Human Body Model.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Kontaktperson
Florian Feist
Dipl.-Ing. Dr.techn.
Beginn: 30.11.2015
Ende: 30.05.2016
The aim of this study is the analysis of the potential of adaptive restraint systems. In the course of this project novel, generic trigger algorithms for different load cases are evaluated.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.10.2015
Ende: 29.04.2016
The aim of this study is the development of a methodology as component for a comprehensive assessment for integrated pedestrian protection systems based on numerical methods.
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Kontaktperson
Florian Feist
Dipl.-Ing. Dr.techn.
Beginn: 31.10.2015
Ende: 29.04.2016
FE-Simulations to determine boundary conditions for the B-Pillar in a component test.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2015
Ende: 29.04.2016
Analysis of potential for timber in the vehicle structure construction focusing Crash
Mitarbeiter*innen
Projektleiter/in an der OE
Stefan Kirschbichler
Dipl.-Ing.
Beginn: 31.07.2015
Ende: 30.03.2016
This genetic studies examined the fundamental potential of innovative occupant restraint measures for the frontal load case.
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.08.2015
Ende: 30.03.2016
Performing various maneuvers with a production vehicle for examining the driving behavior. The muscle activity is recorded with an EMG measuring device and the occupant kinematics is measured by a 3D motion capturing system. This data is then used for a simulation model.
Mitarbeiter*innen
Projektleiter/in an der OE
Stefan Kirschbichler
Dipl.-Ing.
Beginn: 31.12.2015
Ende: 30.03.2016
Improvement of the prediction of crack initiation and failure at the simulation of metal car body structure at highly dynamic loads.
Mitarbeiter*innen
Projektleiter/in an der OE
Bernd Schneider
Dipl.-Ing.
Beginn: 14.03.2014
Ende: 13.03.2016
The aim of the project is to develop a method which makes it possible to implement a three-dimensional environment of an accident in the work process of accident reconstruction.
Mitarbeiter*innen
Projektleiter/in an der OE
Matthias Rüther
Dipl.-Ing. Dr.techn.
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2015
Ende: 28.02.2016
Extension of the SSM approach to the rear seats in the vehicle.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.05.2015
Ende: 27.02.2016
The assessment of the effectiveness of integrated vehicle safety systems numerical calculation methods could be used. The goal of this project is the development of modules for this method. The suitability of the modules will be demonstrated through a principled effectiveness study based on real world accident cases. For the proof of principle real accidents are used.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2015
Ende: 27.02.2016
In order to increase road safety for the elderly, it is useful to develop a dual strategy that conveys the one hand on the driver education knowledge about "Seniors in traffic", on the other hand, it is necessary involve the elderly itself under the term Impowerment.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.10.2014
Ende: 27.02.2016
Beside energy efficiency, the planning of charging infrastructure and the ecological benefits, the topic road safety is of utmost relevance for the present boom of electric powered vehicles and requires further research. Due to different sizes, masses, weight distribution and hence acoustic properties of these types of vehicles, different vehicle dynamics and perceptions of other road users are expected. Those aspects may result in changed demands on crash probabilities, circumstances of accidents and severity rates, which this project proposes to investigate in depth.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Kontaktperson
Beginn: 31.01.2014
Ende: 30.01.2016
Extension of the SSM approach to pole impact.
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.07.2015
Ende: 30.01.2016
Simulation based analysis of experiments
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2014
Ende: 30.12.2015
Investigation of vibration noise in seat belts in the vehicle
Mitarbeiter*innen
Konsortialführer/in bzw. Koordinator/in bei Kooperationen mit externen Organisationen
Josef Girstmair
Dipl.-Ing. Dr.techn.
Projektleiter/in an der OE
Stefan Kirschbichler
Dipl.-Ing.
Beginn: 28.02.2015
Ende: 30.12.2015
The aim of the project OBSERVE is to develop a risk-based assessment procedure based on data of the local accident statistics, pedestrian-driver interaction observations, traffic counts and local factors.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.03.2015
Ende: 30.12.2015
Development of a simplified simulation model for a crash-simulation of frontal collisions
Mitarbeiter*innen
Projektleiter/in an der OE
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.03.2015
Ende: 30.12.2015
Assessment of road restraint systems transitions when impacted by a vehicle.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2015
Ende: 30.12.2015
Analysis of accident causation factors in motorcycle accidents in Austria.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2015
Ende: 30.12.2015
The aim of the project is to generate video and test data based provided by crash tests on chassis systems
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.10.2015
Ende: 30.12.2015
Currently, numerical multi-physics models which can reliably predict the crash performance of lithium-ion traction battery cells for vehicles are not available. Such models are able to determine hazard levels and the maximum permissible deformation that will not lead to a thermal runaway. This knowledge is crucial for vehicle weight reduction and increased range, as the traction batteries can be located within typical crash deformation areas. Such models allow for sensitivity analysis in terms of battery and cell architecture as a basis for enhanced battery crash safety. A numerical multi-physics cell model will open up radically new approaches for vehicle structures.
Mitarbeiter*innen
Projektleiter/in an der OE
Christoph Breitfuß
Dipl.-Ing.
Beginn: 30.06.2013
Ende: 30.12.2015
MATISSE aims to make a significant step forward in the capability of the automotive industry to model, predict and optimise the crash behaviour of mass produced Fibre Reinforced Polymer (FRP) composite structures, which will be extensively used in Alternatively Powered Vehicles. The ability to investigate crashworthiness of FRP vehicle structures by numerical simulation is crucial for these lightweight materials to see widespread use in future cars. By delivering this ability MATISSE will lead to safer, more efficient and more desirable cars. Modelling tools developed will be further validated through two automotive solution components: adaptive crash structures and high-pressure storage tanks. Future crash scenarios will be assessed and new evaluation criteria regarding safety will be developed. With a consortium led by automotive industry yet including partners active in the aerospace domain (where FRP structures are widely used), MATISSE leverages the knowledge from the aeronautical sector while assuring that advances in modelling, simulation and testing capabilities will be directly applicable to and acceptable for automotive applications, reinforcing the European automotive sector. MATISSE comprises 11 partners from 6 countries, including four high ranking European universities/research centres, three SMEs with extensive experience in FP projects, two innovative tier-1 suppliers and two major European vehicles manufacturers. The balance and complementarity of the partners is ensured as each of them has been selected to cover a specific knowledge gap. The consortium as a whole has all the expertise required for the successful implementation of MATISSE objectives. Finally, MATISE will cooperate with existing and future parallel projects through a specific clustering committee created for this purpose. Specific measures for the efficient dissemination and exploitation of project results have been designed and will be implemented in order to maximize its impact.
Mitarbeiter*innen
Projektleiter*innen
Andreas Johann Gutsche
Dipl.-Ing.
Teilnehmer*innen / Mitarbeiter*innen
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2012
Ende: 29.09.2015
In the next 20 years the number of small and light-weight full electric vehicles will substantially increase especially in urban areas. These Small Electric Vehicles (SEVs) shows distinctive design differences compared to the traditional car (e.g. no bonnets, vertical windscreens, outstanding wheels). Thus the consequences of impacts of SEVs with vulnerable road users (VRU) and other (heavier) vehicles will be different from traditional collisions. These fundamental changes are not adequately addressed by current vehicle safety evaluation methods and regulations. VRU protection, compatibility with heavier opponents and the introduction of active safety systems have to be appropriately taken into account in order to avoid any SEV over-engineering (e.g. heavy or complex vehicle body) by applying current regulations and substantially impair the SEVs (environmental) efficiency. Therefore the project SafeEV aims based on future accident scenarios to define advanced test scenarios and evaluation criteria for VRU, occupant safety and compatibility of SEVs. Moreover, industrial applicable methods for virtual testing of these scenarios and criteria (e.g. a method for active occupant safety assessment) will be developed. These methods are applied in order to derive protection systems for enhanced VRU and occupant safety for SEVs. The evaluation of one developed hardware system will be used to demonstrate the potential and applicability of these new methods. Dedicated best practice guidelines for VRU and occupant safety evaluation of SEVs will ensure a sustainable impact for industry and regulative organisations beyond the project duration. With the new evaluation methods developed, vehicle safety for SEV on urban roads in the next decade will be adequately addressed resulting in less fatalities and injuries without compromising vehicle efficiency. Moreover cost-efficient development of SEVs will be made possible by the new virtual testing methodologies developed.
Mitarbeiter*innen
Projektleiter*innen
Peter Luttenberger
Dipl.-Ing.
Teilnehmer*innen / Mitarbeiter*innen
Andreas Johann Gutsche
Dipl.-Ing.
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2012
Ende: 29.09.2015
Accident reconstruction
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2007
Ende: 30.08.2015
Traffic education works! Studies show a learning effect of children. However, they also show that after a short time period without further repetition the relevant contents to road safety are lost. At the moment more training is performed considering the relevant accident situation. However, only some aspects of the accident situation is teached with respect to children as road users. It is important to convey the right behaviors and to educate appropriate conflict situations to prevent accidents. This is only possible if the real accident situation is known.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Kontaktperson
Christoph Zauner
Dipl.-Ing. BSc
Beginn: 01.01.2014
Ende: 29.06.2015
Radmodellierung für den Small Overlap Crashlastfall:For the generation of validation data for simulations and deriving knowledge first novel principle experiments are carried out.
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2013
Ende: 29.06.2015
The goal of the project is the analysis of real-world accidents in Austria with focus on tyre-surface interaction. In principle road accidents should be analysed in which the tyre interaction has a major impact.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2014
Ende: 29.06.2015
Improvement of Pedestrian Protection Test Standards Concerning Pelvis Injuries
Mitarbeiter*innen
Projektleiter/in an der OE
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Kontaktperson
Florian Feist
Dipl.-Ing. Dr.techn.
Beginn: 28.02.2014
Ende: 30.05.2015
Derivation of a suitable experimental design for the ASIS system
Mitarbeiter*innen
Projektleiter/in an der OE
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.10.2014
Ende: 30.05.2015
In 2011 1900 children were treated in hospitals because of head injuries. The rate of helmet wearing is 86% for children under the age of 12 after helmet wearing has been made mandatory by public law for them. However, it was observed that 9 of 10 children don’t use their helmet in a correct way. A long term decrease of head injuries can be reached only by an improvement of helmets and their correct use or easier handling. A properly worn helmet can reduce the head injury risk up to 45%. Within the European Union bicycle helmets are tested in accordance to the EN 1078. This standard hardly changed in recent years. The shock absorption of the helmets is evaluated using the maximum deceleration of a rigid head form during the impact. Misuse of the helmet is disregarded. Furthermore impact duration as well as rotational acceleration are ignored, although several studies highlighted their relevance for injuries. The lack of changes of test standards caused few innovation of bicycle helmets within the last years. The major aim of the Project “CLEVERER HELM” is to reduce head injuries among children by improving helmet quality and usability. A usability rating will be focused on the avoidance of helmet misuse or the protective function when they are not correctly worn. New test standards will be developed that will be adjusted on real world accident scenarios, injury patterns and the special user behavior of children. The study should provide answers to the following research questions scientifically and objective: 1.) How many children wear their helmet incorrect? How do they wear it and why? 2.) What are typical accident scenarios of child cyclists? 3.) How do typical bicycle accident related head injury patterns look like? 4.) Are current test standards in accordance to accident scenarios and injury patterns? 5.) What weaknesses do current standards for bicycle helmets for children have? 6.) How could an improved test concept for bicycle helmets for children look like? 7.) How do helmets perform under the new test conditions compared to the current standard? 8.) Are there any helmets that provide sufficient protection if incorrect worn? 9.) What happens in a crash when the helmet is not correct worn? 10.) How could improved tests increase the protective function of helmets and thereby reduce the number of head injuries?
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Kontaktperson
Florian Feist
Dipl.-Ing. Dr.techn.
Corina Klug
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.01.2014
Ende: 29.04.2015
FTG-S10: Car2X Sensor models and cooperative ACC
Mitarbeiter*innen
Projektleiter/in an der OE
Arno Eichberger
Ass.Prof. Dipl.-Ing. Dr.techn. Univ.-Doz.
Teilnehmer*innen / Mitarbeiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.03.2014
Ende: 31.03.2015
Children are one of the most vulnerable road users and need a particular injury protection. At average roughly 3200 children casualties in the age between 0-14 years are present in Austria. Accident in-depth analysis show that children are exposed to injuries at the moment when they are participating actively as road users. About 40% of the fatal and severe inured children are pedestrians. Further 30% are using a bicycle, scooters, skateboards, etc. Accident causation of child accidents are still not fully evaluated and cannot be answered with traditionell accident analysis. There is a need of new analysis methods to understand children accident causation. With this knowledge protection of our children from the dangers of the road, and ensuring that they are still developing an independent form of mobility could be answered.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Kontaktperson
Christoph Zauner
Dipl.-Ing. BSc
Beginn: 30.09.2013
Ende: 30.03.2015
The aim of the project is the coverage of rural and/or suburban regions with multimodal services, which are more attractive for customers and economically more efficient than conventional public transport, accessed by foot, bike & ride or park & ride, and at the same time ecologically and socially more sustainable, than the sole use of motorised individual transport. The proposed solution, which shall be examined during the project in terms of technical and economical feasibility, is based on a new vehicle type for individual road transport, which are designed for a range of 5-15 km and synergetical use for wide target groups, and a reorganisation of the conventional, scheduled public transport: With a lower density of lines and stops, there can be provided shorter intervals and riding times as well as better interconnections.
Mitarbeiter*innen
Projektleiter/in an der OE
Stefan Kirschbichler
Dipl.-Ing.
Beginn: 31.03.2014
Ende: 30.03.2015
As a significant potential for the reduction of run-off-road accidents due to drowsiness, distraction and inattention are Rumble Strips.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Beginn: 30.06.2013
Ende: 30.03.2015
The goal is to develop test specimens made of concrete for dynamic testing in a laboratory scale.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Kontaktperson
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.10.2013
Ende: 30.03.2015
Die Bestimmung von realen Körpertrajektorien gewinnt in der Fahrzeugsicherheit immer mehr an Bedeutung. Diese Trajektorien können beispielsweise für eine Kinematikanalyse oder zur Validierung von Simulationsmodellen genutzt werden. Eine Möglichkeit präzise Körpertrajektorien zu bestimmen ist die 3D-Filmausertung.
Mitarbeiter*innen
Projektleiter/in an der OE
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2013
Ende: 30.12.2014
The fundamental aim of this project is to create a basis for an objective comparison of the accident risk between humans and HAF.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2014
Ende: 30.12.2014
Sichere Integration von elektrischen Energiespeichern im Motorrad beim Crash und im täglichen Gebrauch
Mitarbeiter*innen
Projektleiter/in an der OE
Christian Ellersdorfer
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 01.07.2012
Ende: 30.12.2014
Improved Predictability
Mitarbeiter*innen
Projektleiter/in an der OE
Stefan Kirschbichler
Dipl.-Ing.
Beginn: 31.10.2012
Ende: 29.10.2014
The mission of AdvAluE is to contribute to green mobility through lightweight design of car components. This will be achieved by the increase of the energy absorption capability (EAC) of aluminium components and structures in cars. To this end a holistic approach of engineering for high EAC is developed, including computational design strategies, knowledge-based material selection and development, and customised processing.
Mitarbeiter*innen
Projektleiter/in an der OE
Christoph Breitfuß
Dipl.-Ing. Dr.techn.
Kontaktperson
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2010
Ende: 09.10.2014
Accident Analysis of non-defined crash tests
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Kontaktperson
Beginn: 28.02.2014
Ende: 29.09.2014
Creation of simulation model for pre-development of side crash-structure
Mitarbeiter*innen
Projektleiter*innen
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 31.05.2013
Ende: 29.06.2014
Numerische Methoden zur mechanischen Integration elektrischer Energiespeicher
Mitarbeiter*innen
Projektleiter*innen
Christian Ellersdorfer
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 01.05.2011
Ende: 29.04.2014
Bei der Integralen Fahrzeugsicherheit werden die Systeme der Aktiven und der Passiven Sicherheit kombiniert. Die wesentlichen Zielsetzungen sind die Vermeidung von Unfällen sowie die Reduktion der Schwere der Unfälle, sowie eine weiter Senkung des Verletzungsrisikos durch Ausschöpfen von Potentialen, die sich durch die Systemintegration ergeben. Zu diesem Zweck fließen neuartige Systeme der Fahrzeugsicherheit wie Fahrerassistenzsysteme (z.B. innovative Bremsassistenten), Pre-Crash-Funktionen für die Rückhaltesysteme oder adaptive Sicherheitssysteme, deren Funktionsweisen und Wirkung sich der Art und Schwere des Unfalls anpassen. Für die Entwicklung dieser neuartigen Systeme gibt es keine genormten und standardisierten Verfahren zur Evaluierung ihrer Wirksamkeit was eine Systemauslegung ermöglichen würde. Die Integration der unterschiedlichen Systeme erfordern eine entsprechende disziplinübergreifende Betrachtung von Fahrer, Fahrzeug und Umwelt die Erarbeitung von multidisziplinären Simulationsmethoden und prozesse. Ein wesentliches Werkzeug für diese disziplinübergreifende Tätigkeit stellt die Co-Simulation dar - dabei werden unterschiedliche Tools und Modelle kombiniert, um die Eigenschaften des vernetzten Gesamtsystems darzustellen. Dadurch können disziplinübergreifende Fragestellungen beantwortet werden, sowie Abhängigkeiten und Interaktionen zwischen den einzelnen Teilgebieten aufgezeigt werden. Zielsetzung dieser disziplinübergreifenden Auslegung ist es, ein optimiertes Gesamtsystem zu entwickeln und vor allem ein stimmiges Gesamtfahrzeug sicherzustellen.
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2010
Ende: 30.03.2014
Kritische Infrastrukturbauwerke im Verkehrs- und Transportwesen dienen einerseits dem Schutz von Fahrzeuginsassen andererseits werden solche Bauwerke auch zum Schutz weiterer Infrastruktureinrichtungen aufgestellt. So werden Fahrtrassen beispielsweise durch Galerien vor Steinschlägen und Lawinen gesichert. Die Galerie selbst wird dabei durch Überschüttungsmaterial aus Erdreich, welches bis zu Schütthöhen von sechs Metern reichen kann, vor Beschädigung geschützt. Durch das Schüttmaterial ergeben sich allerdings hohe statische Belastungswerte für die Infrastrukturbauwerke, die daher massiv ausgelegt werden müssen. Um die statische Grundbelastung, bei gleichwertigem Schutz, deutlich zu verringern, wären Dämpfungsmaterialen beziehungsweise Dämpfungssysteme mit hoher Energieaufnahme wünschenswert. Derartige Dämpfungsmaterialen sollten aber auch bei anderen Anwendungsbereichen einzusetzen sein. So zeigt sich immer wieder, dass der Aufprallschutz zur Absicherung von Tunnelportalen und Tunnelnischen nicht vollständig ausreicht, um die Insassen bei einem Fahrzeuganprall vor schwersten Verletzungen zu schützen. Ziel in diesem Projekt ist die Entwicklung einer hochenergieabsorbierenden Betonzusammensetzung für unterschiedliche Anwendungsgebiete auf Basis von statischen und dynamischen Versuchen sowie durch Finite Elemente Simulationen. Hochdynamische Realversuche, in welchen ein Impaktorwagen gegen Betonproben beschleunigt wird, werden für die Validierung von Materialkennwerten in einem Finiten Elemente Simulationsmodell verwendet. Mit diesem Berechnungsmodell wird ein virtueller Funktionsnachweis der Betonzusammensetzung für weitere Anwendungsgebiete erbracht und neue Einsatzmöglichkeiten aufgezeigt.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Timm Freistätter
Peter Luttenberger
Dipl.-Ing.
Thomas Pistotnig
Beginn: 01.01.2012
Ende: 30.12.2013
Bewertungstheorie und -methodik eine ganzheitlichen Bewertung von integralen Sicherheitssystemen im Simulationsprozess unter Berücksichtigung paralleler und serieller Effekte.
Mitarbeiter*innen
Projektleiter/in an der OE
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.06.2012
Ende: 30.12.2013
Die Bestimmung von realen Körpertrajektorien gewinnt in der Fahrzeugsicherheit immer mehr an Bedeutung. Diese Trajektorien können beispielsweise für eine Kinematikanalyse oder zur Validierung von Simulationsmodellen genutzt werden. Die Bestimmung der realen Körpertrajektorien erfolgt hauptsächlich über 3D-Filmauswertungen. Diese Technik setzt aber voraus, dass der Körper zu jedem Zeitpunkt von zumindest zwei Kameras sichtbar ist, was aber leider häufig bei einem Crashtest nicht der Fall ist. So taucht beispielsweise der Dummykopf in den Airbag ein und ist somit nur zu Beginn oder auch teilweise am Ende des Versuches gut sichtbar. Das Dummythorax ist bei einem Fahrzeugversuch meist überhaupt nicht sichtbar. Aus diesem Grund kommen vermehrt sogenannte Gyrosensoren in Kombination mit Beschleunigungssensoren zum Einsatz. Durch eine entsprechende Integration der Messgrößen können die Körpertrajektorien bestimmt werden.
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2012
Ende: 30.12.2013
Verbesserung der Vorhersage von Rissinitiierung und Versagen bei der Simulation von metallischen Karosseriestrukturen bei hochdynamischen Belastungen
Mitarbeiter*innen
Projektleiter*innen
Bernd Schneider
Dipl.-Ing.
sonstige Funktion
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 14.03.2013
Ende: 30.12.2013
Bei ca. 30% der Unfälle auf Österreichs Straßen sind Müdigkeit, Ablenkung und Unaufmerksamkeit die Haupteinflussfaktoren. Diese Unfallursachen äußern sich unter anderem in der Unfallstatistik als Abkommens- oder Auffahrunfälle. Moderne C2X (Car-To-X) Systeme sollen den Fahrer durch den permanenten Informationsaustausch von der Infrastruktur zur OBU (Onboard-Unit) im Fahrzeug durch moderne IKT (Informations- und Kommunikations- Technologien) bei der sicheren Lenkung des Fahrzeuges unterstützen. Informationen über den mikroskopischen und makroskopischen Verkehrszustand können ebenso wie der Zustand der Fahrbahn (Wetterinformation, etc.) gemeinsam (kooperativ) genutzt werden. Aber die Anforderungen, die kooperative Verkehrssysteme erfüllen müssen, und wie diese zu prüfen sind, sind weitgehend ungeklärte Fragen, die derzeit die verantwortlichen Straßenverwaltungen beschäftigen. In dem Projekt ALERT wird wissenschaftlich untersucht, welche Anforderungen aus Gründen der Verkehrssicherheit an ein modernes kooperatives Verkehrssysteme zu stellen sind um die Zahl der Auffahr- und Abkommensunfälle aufgrund von Müdigkeit und Ablenkung zu verringern. Insbesondere werden Minimumanforderungen an C2X Systeme hinsichtlich der notwendigen zur Verfügung zu stellenden Daten und deren Wirksamkeit im Hinblick auf die Verkehrssicherheit beurteilt. Das Projekt ist als Studie zu verstehen, mit dem Ziel eine Anforderungsliste an C2X-Systeme zu erarbeiten. Damit ist bereits mittels technischer Datenblätter eine grundsätzliche Bewertung der Effizienz, bezogen auf den Einfluss auf Müdigkeits-, Ablenkungs- und Unaufmerksamkeitsunfälle, moderner und zukünftiger C2X Systeme möglich.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Stefan Kirschbichler
Dipl.-Ing.
Beginn: 30.04.2012
Ende: 29.11.2013
Im Verkehr gibt es zahlreiche Situationen, bei denen gerade noch eine Kollision mit Folgeschäden verhindert werden konnte. Eine Detektion dieser unentdeckten Verkehrskonflikte und Beinahe-Unfälle zeigt mögliche Problembereiche und Gefahrenstellen auf, welche durch optimiertes Verkehrsmanagement und gezielte Verkehrssicherheitsmaßnahmen entschärft werden können. In diesem Projekt werden moderne Informations- und Kommunikationstechnologien (IKT) hinsichtlich ihres Einsatzes für die automatische Konfliktdetektion und -klassifikation untersucht sowie deren Potentiale für Informationsdienste durch das Verkehrsmanagement (z.B. Meldung an andere Verkehrsteilnehmer, Routing) erläutert. Dazu werden multivariate Datenanalysemethoden für IKT Sensorsignale untersucht, um typische Bewegungsmuster bei Konfliktsituationen zu identifizieren. Die intensive Einbindung von zukünftigen Nutzern erlaubt die Gestaltung von Schnittstellen zum Verkehrsmanagement, um neben Unfalldaten auch Konfliktinformationen für die Effizienzsteigerung des Verkehrssystems zu nutzen.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Stefan Kirschbichler
Dipl.-Ing.
Beginn: 31.08.2012
Ende: 30.08.2013
Elektrische Fahrzeuge im öffentlichen Personennahverkehr ermöglichen besonders energieeffiziente Mobilitätslösungen, die sich bis hin zu 0-Emissions-Systemen im Fahrbetrieb darstellen lassen. Prädestiniert für die Entwicklung innovativer und hoch effizienter Antriebslösungen in diesem Bereich ist das Segment der leichten City- und Midibusse. Aus diesem Grund wurde im Rahmen des von A3plus geförderten strategischen Leitprojektes KLIMA MOBIL ein Fahrzeugkonzept für einen leichten Elektrobus in zwei Aufbaugrößen entwickelt. Aufbauend auf diesem Forschungsprojektes zielt das FFG-geförderte Projekt CHANGE! auf die Entwicklung eines alltagtauglichen Batterie-Schnellwechsel-Systems ab, um eine flexible und effiziente Energieversorgung eines im öffentlichen Personennahverkehr eingesetzten Elektrobusses zu gewährleisten. Neben der Konstruktion eines Batteriewechselsystems und der Gewichtsoptimierung der Rahmenstruktur liegt das Hauptaugenmerk der Forschungsarbeit in der crashsicheren Integration der benötigten Hochvolt-Batterie in das Fahrzeug. Der sicherheitstechnische Nachweis wird durch umfangreiche numerische Struktursimulationen unterschiedlicher Lastfälle realisiert. Ziel des Forschungsprojektes CHANGE! ist es auch das entwickelte Antriebskonzept in Form eines Prototyps gegen Projektende umzusetzen.
Mitarbeiter*innen
Projektleiter*innen
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2011
Ende: 29.06.2013
Im Zuge des Projekts RISKANT wird ein Risikomodell zur Evaluierung von Unfällen mit ortsfesten Hindernissen auf Autobahnen und Schnellstraßen erstellt. Mit diesem können Wirkungszusammen-hänge genauer analysiert und zielgerichtete Maßnahmen abgeleitet werden. Ziel des Projekts ist es, Eintrittswahrscheinlichkeiten für Abkommensunfälle an potentiellen Unfallstellen (Accident Probability Score) zu berechnen und unter Zuhilfenahme von Simulationen einen Riskscore zu ermitteln. Mithilfe der spezifischen Kosten verschiedener Verkehrssicherheitsmaßnahmen werden Kosten-Nutzen-Koeffizienten berechnet und eine Reihung der Maßnahmen vorgenommen.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Kontaktperson
Edwin Christoph Klein
Dipl.-Ing.
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.05.2012
Ende: 30.05.2013
The objective of the project is to develop cost-effective measures (education, awareness- raising, roadside infrastructure) with the help of experts and road traffic participants to reduce misdemeanour at level crossings. Traffic psychological research methods will be adopted. A systematic overview of misdemeanour and its causes (depending on the level crossing safety system) is the basis for the development and evaluation of safety measures in expert panels and focus groups. The result of the project is an Austrian-specific manual with validated measures. In addition, a performance profile for a mobile detection tool is developed to measure misdemeanour on specific level crossings.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Beginn: 31.01.2012
Ende: 30.05.2013
Abkommensunfälle mit Personenschaden sind im A+S-Netz der ASFiNAG der am zweithäufigsten vorkommende Unfalltyp. Bei diesen Unfällen sind allerdings rund die Hälfte aller getöteten Verkehrs-teilnehmerInnen im ASFiNAG-Netz zu beklagen. Eine genaue Analyse, bei wie vielen Unfällen dabei die Fahrzeugrückhaltesysteme (FRS) den Belastungen nicht Stand hält, ist für die Bewertung der bestehenden sowie die Planung der zukünftigen FRS essentiell. Relevant sind dabei auch die Verlet-zungsschwere und die damit verbundenen volkswirtschaftlichen Unfallfolgekosten unter Berücksichti-gung des menschlichen Leides. Durch eine Wirksamkeitsanalyse von FRS in Österreich kann der Straßenerhalter seinen Ressour-ceneinsatz hinsichtlich Infrastrukturkosten optimieren. Ziel ist damit auch die Verringerung der Verlet-zungsschwere von Unfällen mit Personenschaden (UPS) mit FRS-Durchbruch.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.05.2012
Ende: 30.05.2013
The development of adaptive safety systems addressing vehicle occupant protection requires the use of in depth knowledge of various occupant features, specifically those related to the risk of injury. All occupants in passenger vehicles are at risk of sustaining whiplash injuries in a low severity crash. Whiplash associated disorders (WAD), so called whiplash injuries, resulting from car crashes, are a serious traffic safety issue, resulting in over 4 billion costs to European society. Yearly more than 300 000 European citizens suffer neck problems from these injuries and 15 000 result in long terms consequences. In the population, the females are at higher risk of these injuries than the males. The difference in risk between the robust, male, population and the vulnerable, female, part of the population is between 40-100%. This has been reported from epidemiological studies from all over the world since the end of the 1960s until today. Yet still, when assessing the vehicle safety the only available occupant model for these impact scenarios is an average male. Adaptive anti-whiplash systems need to be evaluated for their benefits both for males and females. If there are no improved protective systems, further rising costs for the European Society can be expected. This project aims at establishing the properties for a model of an average female and to implement those in a computational model in order to provide an improved tool for the development and evaluation of adaptive systems with special focus on protection against whiplash injuries. The project will result in a computational model of a female, in addition to the male model that already exists, for low severity testing. In addition, the computational models will be used in the design and evaluation of adaptive seat systems in order to provide enhanced neck injury protection from the seat.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 30.09.2009
Ende: 31.03.2013
The European countries are committed to keep on reducing CO2 emissions and slowing down the climatechange. For the individual transport system, the pure electric vehicle technology powered by green electricityoffers a great chance for an important contribution to the protection of the environment. Resulting from lowenergy density of batteries and the need to offer a convenient range, the battery packs of the near future will beheavy and bulky (despite the latest advances in Li-Ion cells).The objective of SmartBatt is to develop and proof an innovative, multifunctional, light and safe concept of anenergy storage system which is integrated in the pure electric cars structure. The main challenges of this smartintegration are the combination of lightweight design with a high safety level against all kinds of hazards, theoptimization of functions and the intelligent design of interfaces to various on-board systems.In order to meet the various challenges, a consortium of different companies and institutes with good reputationwas formed capable of viewing on the problem from all important sides and willing to contribute with theirknowledge and capacities to the solutions for this specific topic. The expertise of all partners comprises completevehicle competence, electrics, electronics, batteries, lightweight design, engineering, materials, testing andvalidation. All 10 partners from 5 European countries are well experienced in running EC projects. The consortium is wellbalanced: 5 industrial (incl. 2 SMEs) and 5 research partners. The exploitation is not limited to the partnersbut results will be distributed on different ways e.g. project website, papers or trainings as well as face-to-faceworkshops and meetings with OEMs.As the automotive sector is a traditionally male dominated area the SmartBatt project aims at initiating a nextstep towards change. A Gender Action Plan will raise awareness of the gender dissemination and encourage women to participate in research as scientists.
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Teilnehmer*innen / Mitarbeiter*innen
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2010
Ende: 30.03.2013
Integrated Vehicle Safety Systems (IVSS) - that combine elements from active and passive safety - have a high potential to improve both comfort and safety of vehicles and their occupants. The potential safety impacts of a selection of these (available) systems have been assessed in the frame of PReVAL. The objective of the ASSESS Project is to enable widespread introduction of IVSS by A) developing required understanding on the evaluation of Integrated Vehicle Safety Systems and B) implementing these findings in test and assessment procedures that will set targets for optimal systems in terms of occupant protection. As such ASSESS responds to the topic SST.2008.4.1.1 Safety and security by design Technologies and methodologies for the design of transport systems with intrinsic safety and security characteristics which support harmonization and standardization
Mitarbeiter*innen
Projektleiter*innen
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Projektleiter/in an der OE
Bernhard Winkler
Dipl.-Ing.
Kontaktperson
Nikolai Schretter
Dipl.-Ing.
Beginn: 30.06.2009
Ende: 30.12.2012
Evaluation of Rib Deflection due to pendulum tests
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Andreas Johann Gutsche
Dipl.-Ing.
Beginn: 30.11.2011
Ende: 30.12.2012
Modelling simulation and integration of acitve safety systems for a safety concept vehicle
Mitarbeiter*innen
Projektleiter*innen
Stefan Kirschbichler
Dipl.-Ing.
Beginn: 30.09.2011
Ende: 30.12.2012
The determination of real body trajectories is becoming increasingly important in vehicle safety. These trajectories can be used, for example, to analyse kinematics or to validate simulation models. Real body trajectories are mainly determined using 3D film analyses.
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.05.2010
Ende: 30.11.2012
Ziel ist es basierend auf einer mechanischen Belastung, mögliche Beschädigungen einer HV-Zelle mittels numerischer Berechnungsmodelle zu prognostizieren. So soll es beispielsweise möglich sein eine Kurzschlussprognose für eine entsprechende mechanische Belastung richtig vorherzusagen.
Mitarbeiter*innen
Projektleiter*innen
Christoph Breitfuß
Dipl.-Ing.
Beginn: 30.09.2011
Ende: 30.11.2012
The European countries are committed to keep on reducing CO2 emissions and slowing down the climate change. For the individual transport system, the pure electric vehicle technology powered by green electricity offers a great chance for an important contribution to the protection of the environment. Resulting from low energy density of batteries and the need to offer a convenient range, the battery packs of the near future will be heavy and bulky (despite the latest advances in Li-Ion cells). The objective of SmartBatt is to develop and proof an innovative, multifunctional, light and safe concept of an energy storage system which is integrated in the pure electric cars structure. The main challenges of this smart integration are the combination of lightweight design with a high safety level against all kinds of hazards, the optimization of functions and the intelligent design of interfaces to various on-board systems. In order to meet the various challenges, a consortium of different companies and institutes with good reputation was formed capable of viewing on the problem from all important sides and willing to contribute with their knowledge and capacities to the solutions for this specific topic. The expertise of all partners comprises complete vehicle competence, electrics, electronics, batteries, lightweight design, engineering, materials, testing and validation. All 10 partners from 5 European countries are well experienced in running EC projects. The consortium is well balanced: 5 industrial (incl. 2 SMEs) and 5 research partners. The exploitation is not limited to the partners but results will be distributed on different ways e.g. project website, papers or trainings as well as face-to-face workshops and meetings with OEMs. As the automotive sector is a traditionally male dominated area the SmartBatt project aims at initiating a next step towards change. A Gender Action Plan will raise awareness of the gender dissemination and encourage women to participate in research as scientists.
Mitarbeiter*innen
Projektleiter*innen
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 31.12.2010
Ende: 30.10.2012
Child Seat
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.04.2010
Ende: 31.03.2012
Occupant Modelling for Integrated Safety
Mitarbeiter*innen
Projektleiter*innen
Kurt Steiner
Dipl.-Ing.
Teilnehmer*innen / Mitarbeiter*innen
Arno Eichberger
Dipl.-Ing. Dr.techn. Univ.-Doz.
Philipp Huber
Dr.
Stefan Kirschbichler
Dipl.-Ing.
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2008
Ende: 30.03.2012
Improved Predictability
Mitarbeiter*innen
Projektleiter*innen
Kurt Steiner
Dipl.-Ing.
Teilnehmer*innen / Mitarbeiter*innen
Arno Eichberger
Dipl.-Ing. Dr.techn. Univ.-Doz.
Philipp Huber
Dr.
Stefan Kirschbichler
Dipl.-Ing.
Adrian Prüggler
Dipl.-Ing. (FH)
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2008
Ende: 30.03.2012
Potentialanalyse einer neuartigen Schlittenanlage
Mitarbeiter*innen
Projektleiter*innen
Gernot Woitsch
Dipl.-Ing.
Beginn: 31.08.2011
Ende: 28.02.2012
In the near future road cars will be able to detect possible collisions before they happen. Then it will be possible to avoid some accidents by specific actions of driver assistance systems. If a crash is unpreventable, the passenger can be prepared for the collision during the residual time. This project determines the potential for a reduction of the Injury-Risk for car-occupants through an airbag deployment considerably before t0. The goal is to demonstrate possible improvements in order to stimulate the further development of PreCrash-Sensors. Through the pre-crash deployment of the airbag various advantages for the occupant can be obtained: If the airbag is fired before t0 it can be designed significantly bigger in comparison to conventional trigger times because the passenger hasnt moved forward. Thereby a very early coupling of the passenger and resulting low loads are achieved. Another advantage is that the airbag can be inflated much more slowly due to much more time available. So the deployment of the bag can be performed in a gentle way which leads to a less aggressive system that promises improvements especially in OOP-Situations. There is still no future perspective for a hundred percent detection rate of PreCrash-Sensors, so the Airbag-System will additionally be designed for conventional trigger times. It is mandatory that in case of a failure of the PreCrash-Sensors the occupant is protected at least as well as in the todays series-production vehicle. This analysis investigating the potential of precrash activated airbags is based on multibody-simulations with different dummies and crash-scenarios. The results of the simulations are verified by principle tests and full scale sled tests.
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 11.01.2009
Ende: 02.02.2012
A large amount of measurement data is recorded during crash tests for the objective assessment of vehicle safety components. Particularly in the case of prototype tests, which are usually very expensive, it is important to generate as much information as possible about the installed protection systems based on the recorded measurement data. The demands on the test technology are also constantly increasing in order to record new information that is important for the development engineers. Knowledge of the resulting dummy kinematics is also of great interest. At present, 3D film analysis is usually used to determine the precise dummy kinematics. However, this proven method requires that the body under consideration is visible from at least two cameras at all times. However, this requirement is generally not possible, as the dummy is partially obscured by various vehicle components (airbag, B-pillar, etc.) during the test. For this reason, the Institute for Vehicle Safety, in co-operation with two OEMs, has developed a new method which enables the calculation of precise trajectories of individual body parts from the fusion of sensor and video data. This process is being used successfully for development trials.
Mitarbeiter*innen
Projektleiter*innen
Edwin Christoph Klein
Dipl.-Ing.
Teilnehmer*innen / Mitarbeiter*innen
Jörg Moser
Dipl.-Ing. Dr.techn.
Beginn: 31.07.2011
Ende: 30.12.2011
Modellierung von glasfaserverstärkten Kunststoffenmasten im Crashfall
Mitarbeiter*innen
Projektleiter*innen
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Beginn: 30.04.2010
Ende: 30.10.2011
Mit Hilfe von MKS-Modellen soll das Gurtsystem im Fahrzeug-Fondbereich bezüglich der Kindersicherheit untersucht und optimiert werden. Das Hauptaugenmerk liegt dabei auf der Verbesserung der Rückhalteeigenschaften für einen Q6 Dummy, der auf einem Booster Sitz positioniert wird.
Mitarbeiter*innen
Projektleiter/in an der OE
Peter Luttenberger
Dipl.-Ing.
Beginn: 19.12.2010
Ende: 16.06.2011
Funktionsnachweis für den virtuellen Nachweis mittels FE-Rechnungen von Anfahrversuchen am Beispiel einer Übergangselementfamilie
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2009
Ende: 16.12.2010
Risikobewertung von Kollisionsobjekten am hochrangigen Straßennetz
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Kontaktperson
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Eva Heimlich
Thomas Pistotnig
Beginn: 31.12.2009
Ende: 29.11.2010
Cervical disc herniation is a common disease; it can cause severe radicular pain, numbness, motor weakness and cervical myelopathy. Since MRI-diagnostic has become routinely available, the number of patients receiving surgical treatment for cervical disc herniation has rapidly increased. When surgical treatment is necessary, the gold-standard is anterior microdiscectomy and replacement of the disc, either using iliac bone-graft or substitutes, like carbonfibre cages or PEEK-cages, for instance. Therefore, surgery leads to functional loss at the operated motion segment. Clinically, the loss of one cervical motion segment is well tolerated. However, there is concern to create adjacent segment syndrome, that is accelerated degeneration of the adjacent motion segments due to fusion at the operated level. The aim of our study is to investigate the kinematic profile (COR for flexion/extension and lateral bending) of the lower cervical spine (C4 C7) before and after implantation of 3 different types of cervical disc prostheses (Bryan Disc, Prestige Disc, Discover Disc) and to compare the data with the kinematic profile in asymptomatic healthy subjects.
Mitarbeiter*innen
Projektleiter*innen
Manfred Mühlbauer
Prim. Univ. Doz. Dr.
Kontaktperson
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Walter Hruby
Prim. Univ. Prof. Dr.
Wolfgang Krampla
Dr.
Erich Salomonowitz
Prim. Univ. Prof. Dr.
Siegfried Trattnig
Univ. Prof. Dr.
Beginn: 30.04.2008
Ende: 30.09.2010
Im Zusammenhang mit computergesteuerten Fahrzeugen ist eine genaue Evaluierung der möglichen Sicherheitskonzepte beziehungsweise Sicherheitsfunktionen und der in weiterer Folge gesetzten Aktionen wünschenswert. Es sollen dabei theoretische Konzepte gefunden werden, die dann in einem Simulationsprogramm nachgestellt werden. Ziel dieses Projektes ist es, möglich auftretende Fehler zu erfassen und darauf entsprechend zu reagieren.
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Nikolai Schretter
Dipl.-Ing.
Beginn: 31.05.2007
Ende: 30.08.2010
With the lead project KLIMA MOBIL - ZERO-EMISSION VEHICLES IN PUBLIC LOCAL TRANSPORT conventional minibuses are converted into electric vehicles with innovative battery/energy saving systems and practically tested as part of the public local transport (local buses and hailed shared taxis) in two Austrian pilot regions. The objective is a small series production with concrete marketing outlooks.
Mitarbeiter*innen
Projektleiter*innen
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Kontaktperson
Stefan Kirschbichler
Dipl.-Ing.
Beginn: 30.06.2008
Ende: 29.06.2010
Adaptive und Energieabsorbende Lenksäule in einem variablen Schlittenaufbau
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2008
Ende: 29.04.2010
Ziel des Projekts ist es wissenschaftlich zu Überprüfen, welcher Sicherheitsgewinn bei besserer Auslegung von Rückhaltesystemen (v.a. Gurte) im Fond von PKWs sich erreichen lässt. Die Ergebnisse werden bei den Organisationen für Prüfung der Fahrzeugsicherheit vorgestellt, um künftig die Verringerung der Unfallschwere von Fond-Passagieren zu erreichen.
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Florian Feist
Dipl.-Ing. Dr.techn.
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.05.2009
Ende: 30.03.2010
The task of the project is the improvement of a finite elements model of a vehicle by discussing influences on the crashworthiness of the main chassis beam of an off-road-vehicle. The model of the main chassis beam was not improved with the full-scale-simulation-model of the vehicle, but with a reduced model, which contained only the main chassis beam and some attachments. This model was validated by comparing calculations to concept tests, which were made at the Vehicle Safety Institute of the Technical University of Graz. With the changes, the accuracy of the numerical model was improved significantly.
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Gernot Woitsch
Dipl.-Ing.
Beginn: 31.12.2009
Ende: 30.01.2010
Ziel der Untersuchung ist die Erarbeitung von grundsätzlichen alternativen Vorschlägen für die Ausbildung der Anfangsbereiche und der Mindestlänge von Leitschienen und Betonleitwänden. Die Bearbeitung erfolgt durch eine detaillierte Problembeurteilung mit einer Unfallanalyse. Weiters erfolgt eine Prüfung der baulichen Gegebenheiten sowie gegebenenfalls eine Unfallsimulation auf der Grundlage der derzeitigen Leiteinrichtungssysteme. Ein wesentliches Ziel ist, für abkommende Fahrzeuge die Unfallfolgen zu minimieren. Es ist daher festzulegen, in welchem Abstand vor einem Hindernis jeweils in Abhängigkeit des Anfangselementes die Leiteinrichtung beginnen soll und wie das Anfangselement auszubilden ist. Dabei ist auch die Wirtschaftlichkeit mit einzubeziehen. Es werden auch Kombinationen wie z.B. mit einem Dämpfungselement berücksichtigt.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Kontaktperson
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Birgit Nadler
Dipl.-Ing.
Friedrich Nadler
Dipl.-Ing. Dr.techn.
Beginn: 31.08.2008
Ende: 30.12.2009
Österreich hat sich - im Einklang mit der EU - im aktuellen Verkehrssicherheitsprogramm die Halbierung der Zahl an Verkehrstoten bis zum Jahr 2010 zum Ziel gesetzt. Der verstärkt Einsatz von Unfalldaten-speichern (englisch "Event Data Recorder", kurz EDR) wurde als eine der Maßnahmen im Verkehrssicher-heitsprogramm aufgenommen. Im Flugverkehr kommen EDR ("Black Box") schon seit mehreren Jahr-zehnten erfolgreich zum Einsatz, im Straßenverkehr haben diese Systeme bislang noch keinen flächen-deckenden Eingang gefunden. Neben der Möglichkeit der exakten Rekonstruktion von Unfällen haben eine Vielzahl an Praxistest gezeigt, dass durch den Einsatz von EDR-Systemen vor allem das Fahrverhalten der Fahrzeuglenker positiv beeinflusst wird und dadurch Anzahl und Schwere an Unfällen vermindert werden konnte. Die genaue Feststellung der Unfallursachen ist einerseits entscheidend für die Schadens-regulierung und liefert andererseits durch die erweiterte Unfalldatensammlung einen wichtigen Beitrag für die Unfallforschung. In Ergänzung zur herkömmlichen Unfallrekonstruktion (Zeugenaussagen, Auswertung technischer Spuren) können durch den Einsatz von Unfalldatenspeichergeräten Daten von höchster Genauigkeit und Aussagekraft gewonnen werden, welche in der Regel eine eindeutige Klärung der Unfallursache und der Schuldfrage zulassen. Im Zuge dessen besteht die Möglichkeit, Kosten von Gerichts- und Verwaltungsverfahren zu reduzieren.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Kontaktperson
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Eva Heimlich
Beginn: 30.06.2008
Ende: 30.12.2009
Im Falle eines Crashs wird versucht, den Insassen durch Rückhaltesysteme (Gurt, Airbag,) zu verzögern. Adaptive Rückhaltesysteme (RHS) versuchen nun, dem Insassen je nach Gewicht, Sitzposition, Unfallschwere etc. individuell ein optimales Kraftniveau zur Verfügung zu stellen, um ihn optimal und möglichst schonend zu verzögern. Somit ergibt sich die Frage nach der Bestimmung eines optimalen Kraftniveau Verlaufes. Hierfür ist ein Entwicklungstool zu entwickeln mit dem es möglich ist den optimalen Kraftniveauverlauf hinsichtlich verschiedenster Kriterien zu bestimmen, um so die Insassenbelastung zu minimieren. Um nun die Kraftverläufe auch wirklich umsetzen zu können, werden sowohl Konzepte zur Verbesserung bestehender RHS, als auch Konzepte für neue Rückhaltesysteme erarbeitet. Wichtig ist, dass die gefundenen Konzepte auch umsetzbar und daher realisierbar sind. In der vorliegenden Arbeit soll ein Brückenschlag zwischen dem Finden eines optimalen Kraftniveauverlaufes hin zu realen und umsetzbaren Lösungen gemacht werden. Somit ist ein direkter Nutzen der erarbeiteten Lösungen zu erwarten.
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.10.2006
Ende: 29.11.2009
Development of a quality system according to EN 17025 for Dummycertification and testing of vehicle restraint systems according to EN 1317 and pole tests according to EN 12767.
Mitarbeiter*innen
Kontaktperson
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 28.02.2007
Ende: 30.07.2009
Seitencrashberechnung
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.08.2007
Ende: 30.03.2009
World-wide, vehicle safety experts agree that significant further reductions in fatalities and injury numbers could be achieved by deploying appropriate passive (or crash) safety strategies. The FP6 APROSYS Integrated Project (IP) answers to this call by development and introduction of critical technologies that improve passive safety for all European road users for priority accident types and levels of crash severity. The field of passive safety concerns in particular human injury biomechanics, vehicle crashworthiness and protection systems. APROSYS is mobilizing and integrating the European scientific & technological expertise for the development of new technologies for the protection of road users in all relevant accident conditions. Furthermore, this IP aims to increase the level of competitiveness of the European industry by developing new safety technologies. Its main goal is to create tools to improve knowledge and passive safety techniques for the road safety.
Mitarbeiter*innen
Projektleiter*innen
Jürgen Gugler
Dipl.-Ing.
Erich Mayrhofer
Dipl.-Ing. Dr.techn.
Projektleiter/in an der OE
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Kontaktperson
Florian Feist
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Mirjana Dumancic
dipl. ing.
Sanid Emso
Dipl.-Ing.
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.03.2004
Ende: 30.03.2009
Überblick über die derzeit verfügbare Konzepte Fahrzeuge ohne mechanische Führung zu dirigieren Analyse Platz- und Anlagenbedarf mit Entwicklung nachvollziehbarer Algorithmen zur Ermittlung der notwendigen Anlagenparameter und Dimensionen Beurteilung der unterschiedlichen Konzepte
Mitarbeiter*innen
Kontaktperson
Stefan Kirschbichler
Dipl.-Ing.
Beginn: 31.08.2008
Ende: 28.02.2009
Evaluation of real accidents from existing databases and crash test scenarios Definition of different loading scenarios (e.g. Crash scenarios) Definition of relevant limits (e.g. max opening force of door after certain crashes) Selection and modelling of selected mechanisms for evaluation Evaluation of different existing mechanisms with respect to defined limits
Mitarbeiter*innen
Projektleiter*innen
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Astrid Kubista
Beginn: 31.07.2007
Ende: 30.01.2009
Entwicklung eines Berechnungstools zur Konzeptabschätzung im Bezug auf den Kopfaufprall. Mit dem zu entwickelnden Tool soll es möglich sein, basierend auf 2D Schnittdaten, welche schon in einem sehr frühen Projektstadium vorliegen, Konzepte vereinfacht und anschaulich zu beurteilen.
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Kontaktperson
Beginn: 31.08.2008
Ende: 30.01.2009
2004 wurde das Projekt ZEDATU - Zentrale Datenbank tödlicher Unfälle mit Auswertung der Vermeidbarkeitsmöglichkeiten beim Österreichischen Verkehrssicherheitsfonds gestartet. In diesem Projekt wurde eine Verkehrsunfalldatenbank entwickelt, welche auf dem sogenannten STAIRS Protokoll (Standardisation of Accident and Injury Registration Systems) basiert. Das STAIRS Protokoll wurde in dem gleichnamigen EU Projekt erstellt und beschreibt die für Verletzungsanalyse von Fahrzeuginsassen notwendigen Daten. In der ZEDATU wurden zusätzlich Datenfelder des EU Projekts RISER (Roadside Infrastructure for Safer European Roads) hinzugefügt. Durch eine Vermeidbarkeitsmatrix, welche Risikofaktoren zu Mensch, Fahrzeug, Infrastruktur sowie Licht - und Wetterbedingungen beinhaltet, ist eine systematische Auswertung von Vermeidbarkeiten möglich. Anfang 2007 wurde mit der Landesregierung Oberösterreich - Abteilung Verkehrstechnik eine fortlaufende Unfalldatenerhebung eingerichtet. Dabei werden alle tödlichen Verkehrsunfälle in die Datenbank eingegeben, rekonstruiert und analysiert.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Kontaktperson
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2006
Ende: 30.12.2008
Aktive Sicherheitssysteme gewinnen immer mehr an Bedeutung, da man mit rein passiven Sicherheitssystemen an gewisse Grenzen stößt. Ziel aktiver Systeme ist es, Unfallsituationen frühzeitig zu erkennen, um diese wenn es möglich ist, zu vermeiden. Bei einer Nichtvermeidbarkeit von Unfällen, können durch eine frühzeitige Erkennung von Unfällen, die Rückhaltesystem (RHS) früher aktiviert werden, um das Verletzungsrisiko für den Insassen zu minimieren. Es muss aber auch sichergestellt sein, dass bei einem Ausfall der aktiven Sicherheitssysteme oder einem Nichterkennen der Unfallsituation, die Rückhaltesysteme den Insassen ebenfalls den bestmöglichen Schutz bieten.
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Gregor Gstrein
Dipl.-Ing. Dr.techn.
Beginn: 30.06.2007
Ende: 30.12.2008
Entwicklung einer Verzögerungseinrichtung für Schlittentests für Standard-Crashanlagen.
Mitarbeiter*innen
Projektleiter*innen
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Kontaktperson
Manfred Hofinger
Dipl.-Ing.
Stefan Kirschbichler
Dipl.-Ing.
Beginn: 31.07.2007
Ende: 30.12.2008
FMH Testanlage zur Überprüfung der Anforderungen an den Aufprallschutz für Insassen nach FMVSS 201u
Mitarbeiter*innen
Projektleiter*innen
Heribert Kassegger
Dipl.-Ing.
Kontaktperson
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Christian Binder
Beginn: 30.06.2006
Ende: 30.10.2008
Leitschienenberechnung für Motorräder
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Mirjana Dumancic
dipl. ing.
Beginn: 14.09.2008
Ende: 30.10.2008
Entwicklung und Demonstration eines mit biogenen Treibstoffen betriebnene SOFC Batterie-Hybrid-Antriebs
Mitarbeiter*innen
Projektleiter*innen
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Beginn: 31.12.2005
Ende: 30.08.2008
Despite these fatality reductions, Road Safety remains one of today's main societal concerns. Although car manufacturers in particular have gone to great efforts to improve their vehicles passive and active safety over the past 15 years, current road safety research has shown that an asymptote is about to be reached in most countries (even though France recently showed an unprecedented reduction in fatalities through stricter law enforcement policy including the installation of automatic speed cameras) and experts agree that preventive and active safety should now be brought to the fore.
Mitarbeiter*innen
Kontaktperson
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 01.01.2006
Ende: 30.07.2008
Leitschienen Übergangskonstruktion
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Kontaktperson
Mirjana Dumancic
dipl. ing.
Beginn: 29.02.2008
Ende: 30.04.2008
Each year, 700 children are killed on European roads and 80,000 are injured. It represents an unacceptably high burden on Europe's society and economy. The fact that such poor results are observed, despite normal use of CRS (Child Restraint Systems) complying with the ECE 44 Regulation, underlines the high social importance of continued child safety research. The European Commission (EC) as well as National Highway Traffic Safety Administration's (NHTSA) plan for upgrading the existing directives and legislation for frontal and side crash protection safety including additional requirements that will specify performance limits to minimize the risks from injuries to small sized occupants and children in both normal and out-of-position seating locations. These new crash specifications will require the use of additional dummies of various sizes as well as improved injury criteria that will appropriately represent injury thresholds of these population segments. Plan for upgrading existing legislation based on new improved consumer tests and results from these tests that are available for public and publish by various organizations all over the world. Existing Injury Criteria are developed on extensive analysis, for limited size dummy (e.g., an adult like dummy). By using different techniques, scientists try to applied and adopt existing Injury Criteria to other size dummies (e.g., a child like dummy). At the moment two techniques - statistical analysis and scaling - are used in developing appropriate Injury Criteria for different (non-standard) dummy size. As usually necessary data for Injury Criteria development can be collected only for a specific type of vehicle occupant under a given loading condition, (e.g., an adult male or female) statistical analysis is limited for some type of occupants. This is clearly evidenced by the lack of biomechanical data available for children. Under these circumstances scaling techniques and engineering judgment is the only approach to develop injury criteria for other size occupants. The type of scaling most commonly used at the moment is dimensional analysis. For mechanical systems this technique allows the unknown physical responses of a given system to be estimated from the known responses of a similar system by establishing fundamental scaling factors that are based on ratios between fundamental properties that characterize the two systems. In this project detailed acquisition of geometrical data and in addition acquisition of some inertial data over children population between age 4 and 14 will be considered to improve understanding of the influence of these mechanical data on children body dynamic response and injury potential during impact. Dynamic response and injury potential will be studied by using new scaling methods, based on sensitivity analysis and measured data applied to available numerical models of child body and selected existing Injury Criteria. We hypothesize that new scaling techniques will provide more complex and realistic insight how different mechanical parameters variation influence the dynamic response and Injury Criteria and therefore make scaling more realistic. We also hypothesize new scaling method based on sensitivity analysis along with measured data will make possible to considerably improve biomechanical properties of children numerical model and also improve the use of existing Injury Criteria when addressing children injury potential. Improved children numerical model and improved use of Injury Criteria will represent an important tool for evaluating vehicle safety equipment in the future.
Mitarbeiter*innen
Projektleiter/in an der OE
Iztok Ciglaric
Dr. Priv.-Doz.
Beginn: 31.05.2006
Ende: 29.04.2008
Every year, more than 40.000 people are killed in the 15 Member States as a result of road accidents. Another 1.5 million are injured, often being severely crippled. The fact that so many of our citizens die violently or suffer horrible injuries while simply going about their daily business, should, at the very least, create cause for concern. Now, the European Vehicle Passive Safety Network is taking up the challenge. For many, the high number of road fatalities is the most severe problem facing Europe today, the greatest threat to public safety, and one of the most dire catastrophes in history. In any other context, the loss of so many lives would constitute a major disaster, demanding immediate and drastic action. But getting the safety message across, largely a problem of communication is not as easy as it sounds. The PSN has been established to promote passive safety research and, equally importantly, to help in the dissemination of information and results, all with a view to reducing the number of casualties on European roads. The aim of APSN is to mobilise the European scientific & business expertise in Vehicle Passive Safety to accelerate improvements in road safety in order to reduce the annual road victims for the European Union. APSN joint technical and scientific objective is to enhance the level of road safety at affordable costs for the individual user as well as for the European society.
Mitarbeiter*innen
Projektleiter*innen
Jürgen Gugler
Dipl.-Ing.
Projektleiter/in an der OE
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Kontaktperson
Erich Mayrhofer
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.03.2004
Ende: 30.03.2008
Entwicklung einer Anlage zur Überprüfung der Sicherheitsvorschriften für den Aufprallschutz von Insassen nach ECE R21 und FMVSS 201
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Kontaktperson
Heribert Kassegger
Dipl.-Ing.
Teilnehmer*innen / Mitarbeiter*innen
Joachim Ebner
Klaus Matlschweiger
Hermann Struber
Beginn: 31.12.2004
Ende: 30.01.2008
Entwicklung einer Fussgängerschutz-Hüftanlage
Mitarbeiter*innen
Projektleiter*innen
Klaus Matlschweiger
Kontaktperson
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.06.2007
Ende: 30.01.2008
Die Menschmodellierung bei der Entwicklung von neuen Fahrzeugen ist gegenwärtig, aber vor allem in der nahen Zukunft ein sehr wichtigstes Instrument in der FE Crash Simulation. In europäischen Forschungsprojekt wie HUMOS I / II / APROSYS wurden für diese Zwecke Menschmodelle und biomechanische Daten entwickelt und ermittelt. Für das FE THUMS Modell wurden und werden in verschiedene Konsortien ebenfalls Weiterentwicklungen durchgeführt. Teilweise sind nun, für entsprechende Einsatzfälle, bestimmte Körperregionen (noch) nicht hinreichend genau modelliert und/oder es liegen nicht ausreichende biomechanische Daten vor. Insbesondere die dreidimensionale Abbildung der Schulter (Weichteile: Muskel, Bänder, Sehnen, Gefäße, Gewebe; Knochen) ist sehr komplex und wurde noch nicht hinreichend modelliert beziehungsweise untersucht. Das Ziel in diesem Projekt soll eine detaillierte Literaturrecherche hinsichtlich Forschungsaktivitäten zur Modellierung der menschlichen Schulter in FE Modellen sein. In diese Recherche sollen Informationen einfließen, die eine Verbesserung des THUMS Modells möglich machen. Neben Arbeiten die ggf. direkt für die Modellierung von FE Modellen durchgeführt wurden, sollen auch Arbeiten recherchiert werden die die anatomische Funktion (Bewegungsstudien von PMHS (Post Mortem Human Surrogate) aber auch auf in-vivo Studien) oder die Ermittlung von biomechanischen Daten zum Inhalt haben. Dabei sind mikroskopische (Gewebe) wie auch makroskopische (Belastungen des gesamten Schulter-Bewegungsapparates) Untersuchungen relevant.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Mirjana Dumancic
dipl. ing.
Beginn: 30.09.2007
Ende: 30.01.2008
Wimed
Mitarbeiter*innen
Projektleiter*innen
Heribert Kassegger
Dipl.-Ing.
Teilnehmer*innen / Mitarbeiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.09.2006
Ende: 29.11.2007
Entwicklung einer Fussgängerschutz-Bein Anlage
Mitarbeiter*innen
Projektleiter*innen
Klaus Matlschweiger
Kontaktperson
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2006
Ende: 30.10.2007
Leitschienenberechnung
Mitarbeiter*innen
Projektleiter*innen
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Mirjana Dumancic
dipl. ing.
Sanid Emso
Dipl.-Ing.
Beginn: 31.03.2007
Ende: 30.10.2007
Berechnung FMH
Mitarbeiter*innen
Projektleiter*innen
Heribert Kassegger
Dipl.-Ing.
Beginn: 30.09.2006
Ende: 30.08.2007
Each year, 700 children are killed on European roads and 80,000 are injured. It represents an unacceptably high burden on Europes society and economy. The fact that such poor results are observed, despite normal use of CRS (Child Restraint Systems) complying with the ECE 44 Regulation, underlines the high social importance of continued child safety research. The European Commission (EC) as well as National Highway Traffic Safety Administrations (NHTSA) plan for upgrading the existing directives and legislation for frontal and side crash protection safety including additional requirements that will specify performance limits to minimize the risks from injuries to small sized occupants and children in both normal and out-of-position seating locations. These new crash specifications will require the use of additional dummies of various sizes as well as improved injury criteria that will appropriately represent injury thresholds of these population segments. Plan for upgrading existing legislation based on new improved consumer tests and results from these tests that are available for public and publish by various organizations all over the world. Existing Injury Criteria are developed on extensive analysis, for limited size dummy (e.g., an adult like dummy). By using different techniques, scientists try to applied and adopt existing Injury Criteria to other size dummies (e.g., a child like dummy). At the moment two techniques - statistical analysis and scaling - are used in developing appropriate Injury Criteria for different (non-standard) dummy size. As usually necessary data for Injury Criteria development can be collected only for a specific type of vehicle occupant under a given loading condition, (e.g., an adult male or female) statistical analysis is limited for some type of occupants. This is clearly evidenced by the lack of biomechanical data available for children. Under these circumstances scaling techniques and engineering judgment is the only approach to develop injury criteria for other size occupants. The type of scaling most commonly used at the moment is dimensional analysis. For mechanical systems this technique allows the unknown physical responses of a given system to be estimated from the known responses of a similar system by establishing fundamental scaling factors that are based on ratios between fundamental properties that characterize the two systems. In this project detailed acquisition of geometrical data and in addition acquisition of some inertial data over children population between age 4 and 14 will be considered to improve understanding of the influence of these mechanical data on children body dynamic response and injury potential during impact. Dynamic response and injury potential will be studied by using new scaling methods, based on sensitivity analysis and measured data applied to available numerical models of child body and selected existing Injury Criteria. We hypothesize that new scaling techniques will provide more complex and realistic insight how different mechanical parameters variation influence the dynamic response and Injury Criteria and therefore make scaling more realistic. We also hypothesize new scaling method based on sensitivity analysis along with measured data will make possible to considerably improve biomechanical properties of children numerical model and also improve the use of existing Injury Criteria when addressing children injury potential. Improved children numerical model and improved use of Injury Criteria will represent an important tool for evaluating vehicle safety equipment in the future.
Mitarbeiter*innen
Projektleiter*innen
Iztok Ciglaric
Dr.
Beginn: 31.05.2006
Ende: 30.06.2007
Diese Studie bewertet den Einsatz von Wasserstoff in der Verbrennungskraftmaschine als Antrieb für Zweirad- und Freizeitfahrzeuge. Darin wird, beginnend vom Technologievergleich (Brennverfahren, Speichersystem, Betankung) über die Untersuchung der Rahmenbedingungen (Gesetz, Umwelt, Sicherheit, Technik) bis hin zur Marktanalyse (Kundenakzeptanz, Wirtschaftlichkeit) eine Entscheidungsgrundlage für zukünftige Entwicklungsprojekte geschaffen. Nicht Ziel ist es, die Erzeugung des Wasserstoffs, die Infrastruktur oder den Einsatz in der Brennstoffzelle zu bewerten. Diese Studie dient ausdrücklich nicht der Entwicklung eines Fahrzeuges oder Fahrzeugkomponenten. Forschungsprojekte zum Thema Brennstoffzellentechnologie wurden in der 2. Ausschreibung des A3 Technologieprogramms ausführlich durchgeführt.
Mitarbeiter*innen
Projektleiter*innen
Heribert Kassegger
Dipl.-Ing.
Beginn: 31.12.2005
Ende: 30.05.2007
Berechnung Leitschiene
Mitarbeiter*innen
Kontaktperson
Beginn: 31.01.2007
Ende: 30.05.2007
Einblick in die Effizienz der bestehenden Sicherheitssysteme beim Seitenaufprall Analyse der Schwachstellen der bestehenden Sicherheitssysteme Hilfsmittel bei der Entscheidung über die neuen Konzepte zur Verbesserung der Technik des Seitenaufprallschutzes Validierung der neuen Konzepte
Mitarbeiter*innen
Projektleiter*innen
Heribert Kassegger
Dipl.-Ing.
Teilnehmer*innen / Mitarbeiter*innen
Mirjana Dumancic
dipl. ing.
Beginn: 30.04.2005
Ende: 29.04.2007
Aufbau eines Dummy - Zertifizierlabors
Mitarbeiter*innen
Projektleiter*innen
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Projektleiter/in an der OE
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Kontaktperson
Michael Kohlweg
Beginn: 30.06.2005
Ende: 30.03.2007
Aufbau eines Crashlabors
Mitarbeiter*innen
Projektleiter*innen
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Projektleiter/in an der OE
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Klaus Matlschweiger
Beginn: 30.06.2005
Ende: 30.03.2007
Reifenkraftermittlung auf Sand
Mitarbeiter*innen
Projektleiter*innen
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Kontaktperson
Sanid Emso
Dipl.-Ing.
Beginn: 31.08.2006
Ende: 27.02.2007
Berechnung Seitencrashanlage
Mitarbeiter*innen
Projektleiter*innen
Heribert Kassegger
Dipl.-Ing.
Beginn: 31.12.2006
Ende: 27.02.2007
Mitarbeiter*innen
Projektleiter*innen
Heribert Kassegger
Dipl.-Ing.
Beginn: 31.12.1994
Ende: 30.01.2007
Erstellung und Validierung von Materialkarten für die FE Berechnung an Hand von Versuchen
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Kontaktperson
Heribert Kassegger
Dipl.-Ing.
Teilnehmer*innen / Mitarbeiter*innen
Hans-Peter Dimai
Univ.-Prof. Dr.
Stefan Kirschbichler
Wolfgang Sinz
Assoc.Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.06.2006
Ende: 30.12.2006
Fußgängerschutz
Mitarbeiter*innen
Projektleiter*innen
Beginn: 31.01.2006
Ende: 30.12.2006
Schulterkraftermittlung vom THOR Dummy
Mitarbeiter*innen
Projektleiter*innen
Jürgen Gugler
Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 14.10.2005
Ende: 30.10.2006
The project will provide new levels of crash and injury data to support EU vehicle and road safety policy making by developing two new European data systems. The first will be collected in eight countries and will contain in-depth crash and injury data relating to over 1100 injured car occupants and pedestrians. The second information system, will utilise hospital injury data relating to all road user types that already exists in three EU countries. These separate databases will be linked to a range of police, vehicle registration and driver licensing databases using new statistical procedures that will be developed during the project. Together with existing EU funded projects including CARE, SARAC, MAIDS and EACS, these datasets will provide a comprehensive picture of all of the key aspects of accident and injury causation in the EU. There will be a qualitative and quantitative level of co-ordination between CARE and the two new data systems, together they will provide a powerful and complementary data resource. CARE will provide a low level of detail (around 40 fields) of the accident circumstances for every EU injury accident. The hospital data (WP 3) will give a medium level of detail on injuries for selected samples involving large numbers of all types of road user. The in-depth data (WP 2) will be able to explain the causation mechanisms of injuries of car occupants and pedestrians with a high level of detail (over 400 fields) relating directly to vehicle regulation. Together the two new data systems will provide a resource for vehicle safety policy that is missing from existing systems.
Mitarbeiter*innen
Projektleiter/in an der OE
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Kontaktperson
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.01.2003
Ende: 29.06.2006
Ermittlung der notwendigen Aufstelllängen für Leitschienen unter Berücksichtigung der typischen Auslaufbewegung unterschiedlicher Fahrzeuge sowie Erarbeitung eines Katalogs von typischen Unfallszenarien bei Rückhaltesystemen. Insbesondere wird auf die unterschiedliche Unfallcharakteristik LKW, PKW und Einspurige eingegangen
Mitarbeiter*innen
Projektleiter*innen
Teilnehmer*innen / Mitarbeiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Beginn: 31.05.2005
Ende: 30.05.2006
Maßnahmen, die zu nachhaltigen Verbesserungen der Unfallzahlen führen, werden auf einer detaillierten Analyse vorhandener Unfallberichte basierend eine zentralen Unfalldatenbank erstellt. Diese Datenbank soll detaillierte Informationen über sämtliche tödlichen Verkehrsunfälle in Österreich umfassen. Darunter fallen vor allem Daten über das allgemeine Unfallgeschehen sowie Fahrzeug- und anonymisierte Insasseninformationen. Ergänzt werden diese um medizinische und technische Expertenberichte. Durch umfangreiche Datenauswertung und Aufbereitung wird es möglich sein, systematisch zu erfassen, worin die wesentlichen Ursachen für die schweren tödlichen Verkehrsunfälle liegen. Es müsste somit die Definition einer Unfallstellensignifikanz möglich sein. Durch die zusätzliche Durchführung einer Vermeidbarkeitsanalyse sollen Strategien erarbeitet werden, wie durch bauliche und konzeptionelle Maßnahmen, optische Gestaltungen aber auch Änderungen am Fahrzeug die Sicherheit erhöht werden kann, um Unfälle zu vermeiden oder Unfallfolgen zu mildern. Da sehr viele der tödlichen Verkehrsunfälle als Einzelunfälle auftreten und nicht an so genannten Unfallhäufungspunkten, besteht der wesentliche Ansatz dieses Projektes darin, eine Verbindung zwischen den unterschiedlichen Umgebungs- und Begleitumständen sowie des Unfallrisikos herauszuarbeiten. Die Auswertung der tödlichen Verkehrsunfälle bildet eine erste Grundlage für eine weitergehende Tiefenanalyse von Unfällen mit Personenschaden. Die in dem gegenständlichen Projekt entwickelten Datenfelder können somit auch für Unfälle mit Personenschaden verwendet werden. Dadurch wird eine gesamtheitliche Anaylse von Verkehrsunfällen ermöglicht.
Mitarbeiter*innen
Projektleiter*innen
Ernst Tomasch
Dipl.-Ing. Dr.techn.
Projektleiter/in an der OE
Erich Mayrhofer
Dipl.-Ing. Dr.techn.
Kontaktperson
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.06.2004
Ende: 30.03.2006
The vision of the proposed project is to develop a knowledge base that can provide better roadside design tools and strategies as current resources are conspicuously incomplete. This project addresses the current omissions in the current state-of-the-art and has the following specific objectives: 1) Improved data collection analysis for single vehicle crashes including harmonised reporting of roadside collision hazards for Europe. 2) Analysis of existing and new reconstruction activities that will identify the possible impact severity (speed and trajectory) for vehicles involved in single vehicle accidents. 3) Investigate the human factors relevant for single vehicle accidents and identify the potential for countermeasures. 4) Synthesize the technical information developed in the project with the current policies to develop best practice guidelines for the design and operation of roadside infrastructure.
Mitarbeiter*innen
Projektleiter*innen
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Kontaktperson
Beginn: 31.01.2003
Ende: 30.01.2006
Improving safety in road transport constitutes a particularly important area. The objective of this project is to assist European restraint and vehicle manufacturers to develop effective rollover systems in a cost efficient manner. As such systems are implemented, this shall provide increased protection to members of European society who travel by car. The project will cover various types of rollover accidents including injury mechanisms and protection methods. The focus of the project is on occupant safety during rollover scenarios. The target vehicles are passenger cars, including SUV, MPV and Minivans. The main expected results are an electronical rollover database and categorization on rollover scenarios, information on occupant behaviour prior and during roll, best practice instruction for numerical and experimental test methods and a physical demonstrator on rollover occupant safety.
Mitarbeiter*innen
Koordinator
Jürgen Gugler
Dipl.-Ing.
Projektleiter*innen
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 30.06.2002
Ende: 30.12.2005
The objective of this project is to facilitate the efficient and effective development of "smart restraint systems". It recognises that such technologies are already under development to improve occupant safety during crashes. This project shall greatly assist the development of efficient smart restraint systems, thereby reducing societal costs. It shall also improve the competitiveness of the European motor industry by providing clear guidelines on functionality and evaluation requirements. This shall be based on new, important, real world data, new computer models of high risk occupants, and a thorough evaluation of high risk scenarios using a variety of techniques.
Mitarbeiter*innen
Projektleiter*innen
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Kontaktperson
Beginn: 30.11.2002
Ende: 29.09.2005
Increase of flight safety by development of a new security system for fuel tanks
Mitarbeiter*innen
Projektleiter/in an der OE
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Teilnehmer*innen / Mitarbeiter*innen
Beginn: 02.01.2003
Ende: 30.08.2005
Mitarbeiter*innen
Kontaktperson
Beginn: 31.12.1994
Ende: 30.01.2005
Yearly more than one million European citizens suffer neck injuries from car collisions. These injuries often cause long lasting consequences for the individuals. It is expected that whiplash injuries can be reduced significantly by improvements in vehicle design, in particular the seat/head restraint system and the restraint system. As a result of the 4th Framework WHIPLASH project, a test and design method for whiplash protection has been developed, however, this method considers the loading phase of rear-end collisions only. The technical and scientific objective of this new project is to develop evaluation and design methods to minimise the incidence and risk of neck injuries in all important accident conditions and to take the rebound phase of the loading phase also into account. Main innovations in this project include: - implementable design guidelines related to the seat/head restraint system and the restraint system for improved whiplash protection - test methods and a new crash dummy to assess the whiplash protection offered by a vehicle - computer models to support the industrial design process.
Mitarbeiter*innen
Projektleiter*innen
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 28.02.2001
Ende: 27.02.2004
Mitarbeiter*innen
Koordinator
Andreas Moser
Dipl.-Ing. Dr.techn.
sonstige Funktion
W.E. Cliff
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.1994
Ende: 30.01.2004
Mitarbeiter*innen
Projektleiter*innen
Friedrich Pernkopf
Dipl.-Ing. Dr.techn.
sonstige Funktion
Manfred Hofinger
Dipl.-Ing.
Beginn: 31.12.1997
Ende: 30.01.2004
PC-CRASH is a WindowsÓ-based accident-reconstruction program which combines the simulation of pre-collision, collision, and post-collision dynamics for multiple vehicles in a graphical environment. This paper presents the trajectory and collision models on which PC-CRASH is based. PC-CRASH’s model for predicting the 3D kinematics of a vehicle’s pre- and post-impact trajectory, which is based on a discrete- kinetic time forward simulation of vehicle dynamics rather than empirically-derived "spin-out coefficients", is described. The tire-force model (which accommodates ABS), steer angle, wheel braking, weight shift, and suspension effects are introduced and the program’s method of handling pre-impact yaw, braking, acceleration and pre-impact steering is outlined. The momentum-based collision model, which relies on restitution rather than vehicle crush or stiffness coefficients, is defined and the program’s method for dealing with secondary impacts, inter-vehicle friction, and impulse vectors with a vertical component is explained. The paper concludes with a simple reconstruction which demonstrates the various models and the program’s built-in 3D animation capabilities
Mitarbeiter*innen
Projektleiter*innen
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.12.2000
Ende: 30.01.2004
To enhance passive safety for a wide range of conditions thus leading to a reduction of injury numbers. A validated virtual test procedure will be developed including frontal and lateral impacts as well as intermediate impact directions for a range of impact velocities as well as occupant body sizes and body positions. To gain efficiency in vehicle design thus leading to a reduction in the duration and costs of the design process. New procedures and guidelines for model development, validation and application will be developed including a method to predict scatter in crash test results. These procedures will enhance reliability of virtual testing and improve the quality of methods and products These objectives are vital for European Road Vehicle Safety Policy. The focus of the project is on passenger car occupant protection in frontal and side impact collisions as well as intermediate impact directions. The methods developed will, in a more general sense, enhance our capability to address safety for other accident scenarios such as roll over and rearward loading and the protection of vulnerable road users such as pedestrians.
Mitarbeiter*innen
Projektleiter/in an der OE
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.01.2001
Ende: 30.01.2004
The objective of this project is to facilitate the efficient and effective development of "smart restraint systems". It recognises that such technologies are already under development to improve occupant safety during crashes. This project shall greatly assist the development of efficient smart restraint systems, thereby reducing societal costs. It shall also improve the competitiveness of the European motor industry by providing clear guidelines on functionality and evaluation requirements. This shall be based on new, important, real world data, new computer models of high risk occupants, and a thorough evaluation of high risk scenarios using a variety of techniques. not assigned KP: Israel Standards Institutions
Mitarbeiter*innen
Projektleiter/in an der OE
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Beginn: 31.01.2002
Ende: 30.01.2004
In EC approximately 20,000 coaches, over 5,000 kg in size, are involved in accidents with personal injuries. Every year more than 35,000 persons are injured within these accidents. Over 250 occupants of buses and coaches suffer fatal injuries annually. During the last years no tendency for a significant reduction can be found. Therefore the general objective of this project is to generate new knowledge, based on accident studies, for minimising the incidence and cost of injuries caused by bus and coach accidents. It will be achieved by developing cost effective test and evaluation methods for the assessment of the protection offered to the bus occupant and driver in frontal, side and rollover accidents. Emphasis will be put on the various passenger sizes including children. M2, M3 and city buses will be investigated. The project results in a European bus accident database, written regulations and suggested test methods.
Mitarbeiter*innen
Koordinator
Erich Mayrhofer
Dipl.Ing.
Kontaktperson
Bertram Christian Geigl
Dipl.-Ing. Dr.techn.
Beginn: 31.12.1999
Ende: 29.06.2003
Neck injuries in car collisions constitute a serious problem with tremendous implications for the individual as well as for the society as a whole. The costs to the European society are estimated to be between 5 and 10 billion ECU per year. Neck injuries particularly occur in rear end collisions and for this accident type no test methods or passive vehicle safety regulations for neck injury reduction are available. This is mainly a consequence of the limited knowledge on neck injury mechanisms. Moreover, available crash test dummies for evaluation of the occupant protection for frontal or side collisions are not suitable for the safety assessment in rear end collisions. The overall objective of the project is to minimise the incidence and costs of neck injuries by developing effective research tools and test procedures to improve the protection of car occupants in rear end collisions.

Specific results of this project include:

new biomechanical knowledge concerning neck injury mechanisms
a new crash dummy suitable for safety assessment in rear end collisions
measurement criteria for this crash dummy regarding the neck injury risk
computer modelling tools for injury assessment and design optimization for different sized occupants
test methods to assess safety of seat/head restraint system
guidelines for performance principles of safe seatback/head restraint systems
a prototype seat/headrest system to demonstrate the feasibility of the methods and performance principles generated in this study.
not assigned KP: GIE PSA Peugeot Citroen
Mitarbeiter*innen
Projektleiter*innen
Hermann Steffan
Univ.-Prof. Dipl.-Ing. Dr.techn.
Kontaktperson
Kurt Steiner
DIPL.-ING.
Beginn: 31.10.1996
Ende: 30.10.2000
Kontakt
image/svg+xml

 

Institut für FahrzeugsicherheitInffeldgasse 13/6
8010 Graz
AUSTRIA  Tel.: +43 (0) 316 / 873 - 30301
Fax: +43 (0) 316 / 873 - 30302
office.vsinoSpam@TUGraz.at