![]() | A. Jeindl, L. Hörmann, O. T. Hofmann How much does surface polymorphism influence the work function of organic/metal interfaces? Applied Surface Science 2021 https://www.sciencedirect.com/science/article/pii/S0169433221027318 |
![]() | J. J. Cartus, A. Jeindl, O. T. Hofmann Can We Predict Interface Dipoles from Molecular Properties? ACS Omega 2021 https://pubs.acs.org/doi/abs/10.1021/acsomega.1c05092 |
![]() | A. Werkovits, A. Jeindl, L. Hörmann, J. J. Cartus, O. T. Hofmann |
| A. Jeindl, J. Domke, L. Hörmann, F. Sojka, R. Forker, T. Fritz, O. T. Hofmann, Nonintuitive Surface Self-Assembly of Functionalized Molecules on Ag(111) ACS Nano 2021, acsnano.0c10065. https://doi.org/10.1021/acsnano.0c10065 |
![]() | O. T. Hofmann, E. Zojer, L. Hörmann, A. Jeindl, R. J. Maurer, |
![]() | L. Hörmann, A. Jeindl, O. T. Hofmann Reproducibility of potential energy surfaces of organic/metal interfaces on the example of PTCDA on Ag (111). The Journal of Chemical Physics. 2020, 14;153(10):104701. https://doi.org/10.1063/5.0020736 |
![]() | A. T. Egger, L. Hörmann, A. Jeindl, M. Scherbela, V. Obersteiner, M. Todorović, P. Rinke, O. T. Hofmann, Charge Transfer into Organic Thin Films: A Deeper Insight through Machine‐Learning‐Assisted Structure Search. Advanced Science. 2020, 7(15):2000992. https://doi.org/10.1002/advs.202000992 |
![]() | E. Wruss, L. Hörmann, O. T. Hofmann |
![]() | L. Hörmann, A. Jeindl, A. T. Egger, M. Scherbela, O. T. Hofmann SAMPLE: Surface structure search enabled by coarse graining and statistical learning. Computer physics communications. 2019, 1;244:143-55. https://doi.org/10.1016/j.cpc.2019.06.010 |
![]() | M. Scherbela, L. Hörmann, A. Jeindl, V. Obersteiner, O. T. Hofmann Charting the energy landscape of metal/organic interfaces via machine learning. Physical Review Materials. 2018, 17;2(4):043803. https://doi.org/10.1103/PhysRevMaterials.2.043803 |
![]() | V. Obersteiner, M. Scherbela, L. Hörmann, D. Wegner, O. T. Hofmann |