Forschung am Oberbau

Das Institut befasst sich in der Forschung mit:

  • Konstruktion und Bemessung von Oberbaukomponenten
  • Zusammenspiel der Komponenten im System
  • Rad-Schiene-Kontakt
  • Elastizität im Oberbau
  • Weichen, Übergänge, Isolierstöße, ...
  • Validierung von Simulationen im Feld
  • Bestimmung von Kräften, Bewegungen, Beschleunigungen, ..., im Gleis
  • Aufbau eines Labors zur Komponenten und Systemprüfung

Derzeit laufende Forschungsprojekte am RID

Acquisition of measurement sensors, measurement amplifiers, laboratory measurement technology and measurement peripherals.
With the target network 2025+, the Austrian Federal Railways, together with the State of Austria, are making a clear commitment in the fight against the climate crisis in the overall transport plan. However, the basis for this is an efficient infrastructure. A massive increase in train kilometres in the coming years requires at the same time a low-maintenance infrastructure that can cope with the increasing loads. In order for trains to run, today's signalling system needs block sections that are monitored by track circuits, e.g. to generate track occupancy messages from vehicles on the track. These block sections are separated from neighbouring sections by insulating joints, which allows for finer subdivision. The Austrian Federal Railways currently have around 33,000 of these insulating joints installed in their track network. The service life of the insulated joints in Class A tracks is currently around 8 to 12 years, in places only one to two years, depending on the local load. Despite the half-yearly inspection intervals, they are very susceptible to faults and are one of the main causes of delays, accounting for 42 % of all track faults (excluding points). There are various approaches to improve the susceptibility of insulated joints to faults, but so far there is no systematic overall approach. The aim of this project is to develop a systematic approach ranging from the design of the joints, taking into account the local permanent way, to the alignment parameters and the structural design of the insulated joints. The main objective of the project is to develop sustainable isolated joint systems through new designs and/or materials in order to increase the availability of the infrastructure. The project aims to increase the availability of the infrastructure through new designs and/or materials by reducing disruptions, thus contributing to the reduction of CO2 emissions by extending the service life and to the reduction of noise emissions by improving quality.
The aim of the service is the scientifically substantiated verification of the validity of the the cross-track displacement limit value according to Prud'homme for the roadworthiness approval of rail vehicles rail vehicles, in particular for curves with radii of less than 250m ('test area 5'). With theoretical and experimental proofs, the limit value is compared with the state of the state of the art in track design and maintenance, and its validity is verified. verified. A modification of this limit value corresponding to today's limit value is being developed.
The project is part of a Comet-project, with the vision of a fully digitalized, highly performed and extremely resilient Railway system. In this project method development for quantifying the overall structural time-dependent behaviour in respect to its long-term serviceability will be investigated. This requires hybrid models for large-scale simulations based on historic and current load data of a particular assed, as basis for predictive maintenance.
Measurements and simulation will be used to record the influence of vehicle-induced rail stresses under different wear conditions and to re-evaluate their influences on the wear limit dimensions.
The effectiveness and serviceability of the installed ZWP is to be verified by means of subsidence measurements in the open area as well as in the tunnel. In addition, the measured ZWP are to be removed afterwards in order to subject them to static and dynamic stiffness measurements in the laboratory. Since the initial tolerances can be up to cstat +/- 15%, discussions must be held in advance with the manufacturer and the available data clarified. On the basis of these findings from laboratory and track measurements and the comparison with the existing measurement data of the EM250, a recommendation for the age-related replacement of these elastic elements is to be made.