Studienarbeiten


CFD Simulations of Gas/Liquid and Liquid/Liquid Flow in Mixing Elements (2 Master Theses)

The ultimate goal of these Master Theses are database containing geometric models for gas/liquid (G/L) and liquid/liquid (L/L) reactor mixing elements. These geometric models should be characterized via CFD simulations, such that their selection according to predefined synthesis conditions is possible. Additionally, an approximate model that describes the flow (e.g., the mean speed in the device) in these mixing elements should be established.

Based on the results of the CFD simulation studies, advanced G/L and L/L reactor elements will be prepared, and evaluated in the laboratory (this experimental work is not part of the theses). Based on the outcome of these evaluations, additional simulations should be performed, and results should be compared with experimental findings.

The objectives of this work are:

  • Performing benchmark simulations of gas/liquid flow and evaluation of the results against literature data (literature survey partially available)
  • Evaluation of existing G/L and L/L mixing elements (based on simulation) with respect to their suitability for different flow regimes
  • Design of new, advanced G/L and L/L mixing structures to be fed into the model database
  • Comparison of the simulation output with experimental data for selected geometries

Start: May 2018
Contact: Stefan Radl (radlnoSpam@tugraz.at, 0316 873 30412)


Statin synthesis via heterogeneous (bio)catalysis (Paid Master Thesis)

Statins are the active pharmaceutical ingredient (API) of many cholesterol lowering drugs. Their structure consists of the typical statin side-chain possessing two chiral alcohols linked to a heterocyclic core. This side-chain can be synthesized from simple and inexpensive starting materials via a two-step aldol condensation catalyzed by an enzyme called DERA (2-deoxyribose-5-phosphate aldolase). The side-chain can either be directly built at the core of the molecule or linked to the heterocyclic core subsequently via a C-C coupling reaction catalyzed by Palladium.

The goal of this work is to investigate the biocatalytic step in this synthetic route. A number of substrates, such as acetaldehyde, chloroacetaldehyd, benzaldehyde and cinnamaldehyde, will be testes as acceptors in the aldol condensation. The obtained product will be characterized and evaluated according to their potential for serving as intermediate in the synthetic route of statins. Further the enzyme (enclosed in E. coli cells) will be immobilized in order to apply it in a continuous process.

The results of this thesis will serve in the development of an integrated multistep process for the synthesis of statins consisting of a biocatalytic and a metal-catalyzed step.

The objectives of this work are:

  • Substrate screening in batch
  • Immobilization of the enzyme/cells for the application in a continuous process
  • Purification and characterization of the products (NMR)

We offer:

  • payment according to the FWF-rate (€440/month)
  • a comprehensive introduction to the research topic
  • access to novel experimental and analytical devices
  • individual assistance for an efficient realization of the thesis

Start: March 2018
Contact: Bianca Grabner (b.grabnernoSpam@tugraz.at, 0316 873 30409)


2 Bachelor-Projects - Chemical Engineering (Verfahrenstechnik)

Experimental Evaluation of a Particle Fractionator

Current trends in paper and pulp production aim on product diversification covering new markets, i.e. fibre-plastic compounds. Separating fibres and fines (i.e., particles smaller than 200μm) may become a crucial process step in future. Answering to this future need, we developed a novel fractionation device in a collaborative project with industry.

First studies revealed a dependence of the separation performance on key flow parameters, and was investigated by means of high-speed imaging (Figure 1, right panel).

 


Figure 1: Illustration of the fractionation device. (© Jakob D. Redlinger-Pohn, IPPT, TUG)

Bachelor projects will aim on detail investigations of how the fibre network formation affects separation performance. The bachelor students will receive training in the handling of the fractionator, image recording and post-processing with our existing high-speed camera.


We offer

  • high industrial and scientific relevance (i.e., a novel separation process which will be applied in “real-world” trials at a paper mill)
  • bleeding edge high-speed camera equipment and image post-processing routines
  • desk and office space

 

Contact

Stefan Radl, radl(at)tugraz.at; 0316 873 30412

The bachelor thesis projects can be started earliest in summer 2018


Fractionation of Fibre Suspensions

Current trends in paper and pulp production aim on product diversification covering new markets, e.g., fibre-plastic compounds. Separating fibres by length may become a crucial process step in future. Answering to this future need, we developed a novel fractionation device in a collaborative project with industry.

The master student will prepare construction drawings using CAD, preferably SolidWorks. Prior skills from a technical high-school (HTL) are of advantage, but not required. The master student will receive training in the handling of the fractionator, image recording and post-processing with our existing high-speed camera.

 

We offer

·          high industrial and scientific relevance (i.e., a novel separation process which will be applied in “real-world” trials at a paper mill)

·          bleeding edge high-speed camera equipment and image post-processing routines

·          support from the project team at IPPT and IPZ

·          desk and office space

·          Remuneration: 6 months á 440€.

 

For details CLICK HERE.

 

 


Paid Master Thesis - Concept development of a manual capsule opening device

Swallowing issues of standard tablets and capsules is an increasing issue in delivering especially higher dosed medicines to patients. One of the most promising approaches is the use of small multiparticulate systems that can be dispersed in food or beverages for administration. In order to achieve a precise dose of the medicine, a precise dose of multiparticulates is filled into two piece capsules, which are opened before the administration.

This thesis will focus on the engineering concept development of a capsule opening device by simple manual opening mechanism. This master thesis will include a variety of different research tools from literature research to engineering concept development and preliminary functional assessment. The master student will be supervised by myself and supported by PhD students.

 

Requirements

·         Understanding in mechanical systems and engineering

·         Motivation and creativity towards problem solving

·         Interest in working on medical device development and human factored design

We offer

·         A project that matters the patient and is highly relevant for the pharmaceutical industry

·         A thesis in the fast evolving field of patient centric drug products

·         Coaching and career development support

·         Financial support during the thesis work

 

Contact

Univ.-Prof. Dr. Sven Stegemann

TU Graz - IPPT

e-mail: sven.stegemann@tugraz.at

Phone: +43 316 873 0422


Nach oben

Kontakt
image/svg+xml
Michaela Cibulka
Mag.phil.

Institut für Prozess- und Partikeltechnik
Inffeldgasse 13
8010 Graz

Tel.
+43 (316) 873 - 30403
Fax
+43 (316) 873 - 1030403
Sprechstunden
nach Vereinbarung