Finished Projects

Barrieren - Barrier propeties
In this project, barrier propeties of various papers will be investigated. In this context, different chemical and physical propeties of the papers will be elucidated.
ScherZeit - Analysing the effect of shear and retention time on the dosage of retention aids under industry oriented conditions
The retention aids used in the paper industry are in large part cationic polymers of high molecular weight. Their effect depends to a large extent on induced shear after dosage. The emerging flocs and even the polymer itself can be destroyed by the induced shear. To evaluate this effect of shear and also of retention time an already available prototype for simultaneous industrially relevant measurement of formation, retention and dewatering shall be equipped with a shear reactor capable of inducing variable and defined shear in the industrial scale on the suspension in the approach flow.
FLIPPR - Future Lignin and Pulp Processing
Energy supply and climate change are todays most pressing preoccupations. Promoting renewable materials certainly is the most efficient way to improve sustainability in resource use. In this context the pulp and paper industry is well placed as it is based on one of the most important renewable raw materials wood. While novel wood based biorefinery concepts have been in the focus of scientific research for quite some years, the integrated development of new products and their manufacturing within the pulp and paper industry still is to be seen as a major bottleneck with a great potential. In this K-Project Future Lignin and Pulp Processing Research - FLIPPR, the efforts are focused on establishing structural know-how to make more efficient use of both major raw materials streams of the industry - cellulose and lignin. The single projects focus on applications in the pulp and paper value chain but also in areas outside the classical product chain. Product and process design in the pulp and paper industries are mostly empirical due to the underlying complexity of raw materials, processes and products. The goal of FLIPPR is to transform this empirical domain into a science-based endeavour and to give the current product and process development approaches in the field of lignin and fibre usage a new direction. The respective expertise in pulp manufacturing (kraft, sulphite and mechanical pulping processes), paper production (wood free and mechanical graphic papers, packing papers), process technology, analytical chemistry, pulp and paper chemistry, fibre and paper physics, coating technology, organic synthesis, enzymes and biotechnological strategies of the participating scientific and company partners complement each another ideally. FLIPPR is structured in two highly interconnected areas of precompetitive scientific research focusing on lignin and fibre utilization and a third area with the general focus on technoeconomic assessment, LCA and project management. Within these areas a total of twelve projects will be carried out that will enable a more efficient use of the lignin and fibres from existing pulp and paper plants in the future.

Subprojects:
Titel: FLIPPR - Hydrogen-Shuttle - Assessment and evaluation of a thermo-chemical interface between pulp mill waste streams and petrol refinery feed streams, Contact: Schwaiger (01.11.2015 - 01.06.2016)
The Objectives of this study is to check the availability of waste streams (black liquor) from pulp mills for fuel and chemicals production without interference with current mill operation, moreover the evaluation of black liquor processing for fuel precursor separation on site of the pulp mills. Furthermore the logistic needs for (crude) fuel precursor transfer between pulp mills and petrol refineries will be estimated. The process evaluation for thermochemical conversion of pulp mill waste streams (black liquor) into refinery ready feed (crude fuel precursor) for fuel production is the main goal.

Titel: FLIPPR - Flow Fractionation, Contact: Radl, (01.09.2013 - 31.03.2017)
FLIPPR Flow Fractionation focuses on the assessment and development of fibre suspension separation processes.
FLIPPR - Flow Fractionation
FLIPPR Flow Fractionation focuses on the assessment and development of fibre suspension separation processes.
DokIn Holz - Projekt P1 - PhD School DokInHolz-Project P1: Experimental Evaluation and numerical modelling of strenght properties of single fibers and fiber-fiber bonds in paper
The strength and stiffness properties of paper show a high degree of variation, since cellulosic fibers are highly heterogeneous on the microstructural level. These properties are mainly influenced by the strenght properties of single fibers and of the fiber-fiber joints in the fiber network. Futher the size and number of the bonding areas between the fibers is very important. Because of the hygroscopic behaviour of the wood polymers cellulose and hemmicelluloses the mechanical properties are also depending on moisture and temperature. The high degree of heterogeneity on the microstructural level and the high number of number of loading modes of fibers and fiber-fiber joints in paper make it almost impossible to analyze this behaviour using exclusively experimental methods. The application of analytical and numerical methods from the field of mechanics to evaluate the structure-property relationships of paper at different length scales is therefore of high interest. In this project micro-tensile and -stiffness test on fibers and fiber-fiber joints are combined with numerical modelling in order to determine the important parameters under varying failure modes. By combining novel experimental methods and modelling a better understanding of the structural/dynamical behaviour of paper and its behaviour under load will be obtained.
Druckqualität - Print Quality
The project is aimed to identify the reasons for print quality problems of graphic papers and packaging papers. The research is focusing on digital printing and offset printing. The key research approach is to measure local paper properties in high resolution and subsequently link variations in paper properties to local variations in print density and missing ink transmission using statistical modeling. As a result we obtain the influence of different paper properties on printing problems.
FORENT - Formation/Retention/Entwässerung
Eine der größten Herausforderungen in der Papierherstellung ist die komplexe Abhängigkeit zwischen den drei Parametern Formation (lokale Masseverteilung im Papier), Retention von Faser-, Fein- und Füllstoffen im Blatt und gleichzeitiger Entwässerung der Papierbahn im Wet End der Papiermaschine.
Integrated Ecopaper - Integrated Eco Paper
The production of paper is very energy consuming, because a fibre suspension of 0.2% solids content has to be dewatered by mechanical or physical methods to 93% dry content. A comprehensive approach based on new scientific results on simulation and sensor technology will be applied to optimize all three steps of paper production, i.e. wet end, wet pressing and drying. The goals for increased energy efficiency set in the project Integrated Ecopaper are: 1.) Development of a new system of wet end chemicals and improved process water loop closing which will lead to energy savings on one hand by reducing the vacuum power demand for dewatering. On the other hand it increases the solids content of the paper after the wire section leading to a reduction of drying energy. 2.) Development of a wet pressing technology reducing felt vacuum conditioning energy by optimizing water distribution in the press felts. Furthermore it increases solids content after the press section leading to a further reduction of drying energy. 3.) Development of sensors and control systems for the drying section which are reducing start-up time by 30% and thus lowering specific energy consumption per startup by 2.5%. The project will increase energy efficiency in paper production by implementing new dewatering technologies. Improved process control lowers energy consumption by reducing overdrying of the paper, which then needs to be rewetted to meet the specified dry content.
CD-Laboratory for Surface Chemical and Physical Fundamentals Of Paper Strength
A new Christian Doppler Laboratory for Surface Science Investigations on Paper Strength will investigate the strength of fiber fiber bonds in paper. The surface morphology as well as the surface chemistry will be investigated using a collaborative approach. The laboratory head is Prof. Robert Schennach from the Institute of Solid State Physics, Graz University of Technology. Close collaboration with Prof. Wolfgang Bauer from the Institute of Paper Pulp and Fiber Technology, Graz University of Technology and with Prof. Christian Teichert from the Institute of Physics, University of Leoben will enable a simultaneous investigation of the fiber morphology and the surface and interface chemistry. The industrial partner is Mondi Packaging in Frantschach.
FWF - FiberMorph - Cross Sectional Pulp Fiber Morphology
Cross sectional fiber morphology plays a key role for mechanical and optical paper properties. Current methods for the measurement of cross sectional morphology of pulp fibers e.g. fiber wall thickness, fiber wall area, fiber collapse have serious limitations. First, they are not able to measure a statistically meaningful number of fibers with reasonable effort. Second, most of these methods evaluate the apparent shape of the fiber cross section because they do not take into account, that images of fiber cross sections are skewed if the fiber's main axis is not perpendicular to the image plane. This error can only be detected and eliminated if cross sectional properties are measured from 3D datasets of pulp fibers. Therefore, the main goal of the proposed project is to develop an efficient procedure that permits statistically meaningful and correct analysis of fiber cross sectional properties from 3D datasets. In order to obtain statistical significance a large number of fibers has to be analyzed with reasonable effort. Digitization will be obtained by a fully automated procedure (recently developed in another project) delivering high resolution 3D datasets. The main innovation of the proposed research is development and validation of an efficient and correct measurement method. The key issue here is development of novel image analytical algorithms, which provide fully automated detection of the fiber cross sections and tracking of these cross sections through a sequence of slice images. Current solutions require a considerable amount of user interaction, making them time consuming and costly. Full automation of this step will eliminate the bottleneck of the measurement. This will enable serious quantitative research regarding the effect of fiber cross sectional morphology on paper properties and the effect of pulping and stock preparation on fiber cross sectional morphology. A consistent method will be developed that restores the true fiber cross sectional shape from the apparent shape. A sampling strategy is to be worked out, which ensures that measurement results of fiber populations are statistically representative. The obtained results will be verified with other scientific measurement concepts based on confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The new method will be used to research a previously hardly investigated subject: Sequences of fiber images will be analyzed regarding the variation of the cross sectional properties like fiber collapse and wall dimensions. Inter-fiber variations have large impact on mechanical fiber properties like fiber flexibility, strength and conformability. Such analysis will thus provide novel data and identify a possibly important new aspect of fiber morphology. The research will be carried out by two teams. The computer vision group will develop the image analysis part and the pulp and paper group will work out the fiber morphology part. The proposed project will continue the long lasting and fruitful cooperation between these two groups at Graz University of Technology.
Trocknung - Reduction of energy consumption in paper drying using simulations of heat- and mass transfer
Reducing energy consumption in the paper production process has great impact on the productions cost. The high complexity of the drying section and the heat recovery system of a paper machine gives a very large number of possible operator settings for paper drying. The aim of the research projects is development of a simulation tool that identifies optimized settings of the paper machine and thus enables reductions in energy consumption. The software simulates the physical processes of heat and mass transfer in the various aggragates of the paper machine (drying cylinders, IR dryer, impingement hood, heat exchangers, ventilations etc..). It delivers simulated values for the mass and heat fluxes in the papermachine as well as a heat balance. The results from the simulation software are verified in industrial trials and the production process will be optimized accordingly. Furthermore a graphical user interface similar to the process control system in the papermill will be addad to the simulation software. The final software can then be used for further optimization work in the paper mill or for operator training, used for operator training
STRUCSCOP - RSA STRUCSCOP - Ermittlung und Visualisierung der 3D Mikrostruktur von Materialien und biomedizinischen Präparaten
Ermittlung und Visualisierung der 3D Mikrostruktur von Materialien und biomedizinischen Präparaten
Farbübertragung - Modelling Local Print Density from 2D Paper Property Maps
Research on printability has increasingly focused on measurement methods that evaluate local paper properties, i.e. methods that deliver 2D paper property maps. These methods measure the local variations of paper properties and thus enable direct comparison to local inhomogeneity (i.e. print mottle) or defects in the print. A common approach is to register, i.e. to spatially align, an image of the printed paper to paper property maps of the printed region. Such aligned maps enable quantitative analysis of interrelations between local paper properties and local print density, e.g. by point-wise correlation. In the current research project we model the interrelation of local print reflectance to local properties of the printed paper sample. For this purpose we analyze maps of different local paper properties, e.g. variations in basis weight, surface topography, ink penetration, gloss and refractive index, which have been registered to maps of local print reflectance. We create statistical models using multiple linear regression, analyzing the degree of redundancy between the local paper properties and their interrelation to local print density. These models identify the key properties of paper causing printability problems.
Analysis of Coating Holdout and Coating Coverage using the STRUCSCOP automated serial sectioning method
Coating coverage and coating holdout (limited penetration of coating color into the base paper) are essential properties of coating layers. Almost all quality parameters of coated papers are influenced by these parameters. Of special interest are these properties for single coated papers and for the precoat of multiple coated papers. Different methods are used to characterize these properties. For example, the so called burnout-test is used to estimate the coating coverage. Paper cross sections, analyzed with scanning electron microscopy (SEM) or optical microscopy are used to estimate the penetration of coating color into the base paper. But all methods are limited in some way. SEM is limited by a small sample size and the results obtained do not represent the coating layer in total. The burnout test gives only relative results coating layer thickness cannot be determined accurately. A method, developed at the Institute for Paper, Pulp and Fiber Technology of Graz University of Technology allows a representative analysis of coating structures of coated papers at high resolutions. The automated serial sectioning method STRUCSOP provides a 3D model of the investigated paper sample, which can be further processed with especially developed advanced image analysis routines. This analysis routine will be used in this proposed research project to answer open questions regarding coating coverage and coating holdout. The main goal is the development of characteristic parameters, which can be used as a quality measure for coating layers. Paper samples of the project partners will be analyzed to characterize the effects of different coating formulations, coating application systems as well as the effect of pre- and post-calendering on coating structures.
Cellulose drugs - Cellulose-based carrier matrices for conrolled drug delivery
The aim of this project is to develop and evaluate a method for applying drugs on paper carrier materials in laboratory as well as in industrial manufacturing processes. Active Pharmaceutical Ingredients (API) and additives are printed on paper using the drop-on-demand printing technology. The printed paper may then be inserted into a gelatine capsule for peroral applications or directly administered orally after additional modifications. The capabilities of various paper grades are evaluated with respect to the utilization as a pharmaceutical carrier material, considering the intended registration as a pharma-excipient. In addition, models are developed to describe the main phenomena during the printing process and to simulate application, impact, penetration and drying of fluids with porous materials.
Digitalisierte Papierstruktur - Digitized Paper Structure
All fundamental paper properties are basically determined by the three-dimensional distribution of the raw materials in the paper sheet. The structure of the main paper ingredients fiber, filler pigment and coating colour determines mechanical properties and penetration behaviour of liquids. The research project is focused on the development of technology that extracts the structure of fibers, filler pigments and coating colour to build a three-dimensional model of the paper sheet. In order to achieve this, the paper is either split into layers or cut into thin slices. In these layers or slices the spatial distribution of fibers, fillers and coating colour is identified using digital image analysis. In that way it is possible to reconstruct a three dimensional model of paper samples. The information about the tree dimensional paper structure is used to improve the paper production process in order to optimize paper properties, the focus is set to mechanical properties and print quality.
3D-Structural Analysis of digitilized Paper using Computer Vision methods
All fundamental paper properties are basically determined by the three-dimensional distribution of the raw materials in the paper sheet.The structure of the main paper ingredients fiber, filler pigment and coating colour determines mechanical properties and penetration behaviour of liquids. The research project is focused on the development of technology that extracts the structure of fibers, filler pigments and coating colour to build a three-dimensional model of the paper sheet. In order to achieve this, the paper is either split into layers or cut into thin slices. In these layers or slices the spatial distribution of fibers, fillers and coating colour is identified using digital image analysis. In that way it is possible to reconstruct a three dimensional model of paper samples. The information about the tree dimensional paper structure is used to improve the paper production process in order to optimize paper properties, the focus is set to mechanical properties and print quality.
Faserflexibilität - Measuring the flexibility of pulp fibres
Fibre flexibility is a pulp property of considerable importance in the manufacture of paper. It influences the behaviour of the pulp suspension, the drainage characteristics of the sheet forming process and the strength and optical properties of the final paper. Despite the importance of this property there is no widely accepted method to measure fibre flexibility. The intention is to develop a method to measure fibre flexibility directly on single fibres. To get statistically significant results with reasonable effort the method has to be highly automatable. Fibres in highly diluted suspension in a well defined flow profile are loaded with defined hydrodynamic forces. Pictures are taken with a high-speed-camera and the fibres are captured by image analysis. The reaction of a fibre to the defined hydrodynamic load is used to calculate it´s flexibility. With this method influences on fibre flexibility by processes like cooking, bleaching, beating or drying can be investigated and systematically improved.
FFF - z-Elastizität - z-Elasticity
The project aim is to investigate how far the deformation behaviour (short Z elasticity) of paper influences the refining and further processing quality in the direction of the bulking thickness in connection with surface topography.
* If deformation behaviour in Z direction and surface topography is strongly irregular, then a high volume and resistance loss in satinage and smoothing processes is expected.
* If papers with strong heterogeneity of its surface and its compressibility become printed an irregular print-out has to be expected.
* The coating of base papers with a heterogeneous compressibility results in an uneven coating layer with negative effects on the paper quality.
Classic deformation tests on papers are limited to measuring the compressibility between rollers or plates. The homogeneity of the deformation behaviour of papers in Z direction in resolution of microns cannot be examined by these methods. It is aim of the project to measure and to evaluate the deformation behaviour in Z direction and the surface topography spatially. The effect of the z-elasticity on paper properties like smoothness, gloss, volume, stiffness and its influence on printability or post-processing processes like die cutting and folding are investigated. The Z elasticity is result of the raw and auxiliary material choice and of the use of production and refining technologies. To be able to examine the complex interactions, multivariate statistical methods are used.
StruktAnaly v Druckbd u Pap i - Rotogravure Printability and Structure Analysis of SC-Paper
The project 'Rotogravure Printability and Structure Analysis of SC-Paper' was aimed to explore the causes for print mottle of gravure printed SC paper. The focus was set on the analysis of paper structure and identification of paper properties that cause print mottle. Five main fields of work have been adressed: 1.) Because of the low viscosity of the gravure printing ink and the high ink absorption of SC paper, printing ink penetration has often been mentioned as a main reason for mottle. The main objectives are: a.) Development of a technique to measure local variations of printing ink penetration. b.) Resolving the influence of printing ink penetration on print mottle. 2.) One of the main problems with print mottle is, that multiple interacting paper properties are involved in its occurrence. Often mentioned are for example formation, surface topography or printing ink penetration. The main objectives are: a.) Quantitative determination of the varying influence factors. Which paper properties have major influence, which ones have minor influence? Which parameters do not have any effect at all? b.)Evaluation of measurement methods, in order to identify techniques relevant for mottle analysis and avoid irrelevant ones. 3.) Evaluation of printing dot size and amount of transferred ink and its relation to mottle. Such analysis provides useful information: Is gravure mottle caused by varying amounts of transferred ink or is it caused by differences in the ink preading behavior of the individual printing dots? 4.) Not only the overall surface roughness and compressibility, but also local variations of these properties are generally believed to have an influence on print mottle. The influence of local roughness and compressibility variations on print quality was investigated. 5.) Analysis of industrial paper samples provided by the project partners. Investigation of commercial samples provides practical applicability of the research results.
Refining of pulp fibres without using bars
Alternative way for the refining of pulp. The goal is to improve the pulp properties on the one hand, and to reduce the energy consumption on the other hand. not assigned KP: Papierindustrie im deutschsprachigen Raum
Faserschädigung - Image analytical characterisation of chemical and mechanical damage of pulp fibers
Driven by the results of earlier projects, the new target is to evaluate the amount of damage cellulosic fibers have taken by detecting changes in their swelling behaviour. Swelling is induced (or enhanced) by adding chemicals to pulp fibers. Afterwards, digital images of the highly diluted pulp suspension are taken by means of transmission microscopy. The degree of swelling of the single fibers is determined by applying image analysis algorithms which have been developed at this institute. The collected data of all fibers is then evaluated statistically. Mechanical (or other, e.g. chemical, thermic) damage to pulp fibers will result in better access of swelling agents to the fiber wall, thus increasing the amount of swelling.
Micro-/Macrostructure
The goal of this project is to develope new methods to analyse the three dimensional structure of paper. It is planned to construct a flocculation cell to reveal the origins of different paper structures. A better knowledge about the structure of paper enables improvements of sheet properties by means of specific changes during the papermaking process.
3-Dimensional Model of Paper Structure Using Image Analysis
Paper sheets are being split using a laminating device. The fibers in each layer are detected using image analysis. The fibers are assigned to their position in the original sheet and aggregated into seperate volume elements. The local orientation in these elements is determined in order to find correlations to phenomena like paper cockle and dimensional instability. Samples from industrial papers are examined. The other focus of the project is the measurement of the filler z-distribution in paper. Scanning electrone microscopy images are analyzed in order to determine the differences between kaolin z-distribution and calcium carbonate z-distribution.

To top