NQR Nuclei

NQR spectroscopy is possible for isotopes with a nuclear spin I > 1/2 and a high isotopic abundance. An EFG unequal to zero is just possible if the isotope is at a site in a solid that has symmetry lower than tetragonal [1]. Table 1 shows a selection of quadrupolar nuclei. 

Table 1 shows a selection of quadrupolar nuclei [2]. 

Isotope

natural abundance [%]

Spin quantum number I

╬│ [MHz / T]

electric quadrupole moment eQ 

[e * 10-24 cm2]

55Mn

100

5/2

10,501

0,4

59Co

100

7/2

10,054

0,404

75As

100

3/2

7,2919

0,29

79Br

50,69

3/2

10,667

0,293

81Br

49,31

3/2

11,498

0,27

85Rb

72,165

5/2

4,1108

0,274

93Nb

100

9/2

10,407

-0,36

115In

95,7

9/2

9,3301

0,861

121Sb

57,3

5/2

10,189

-0,2

123Sb

42,7

7/2

5,5176

-0,26

127I

100

5/2

8,5183

-0,789

139La

99,91

7/2

6,0144

0,22

181Ta

99,988

7/2

5,096

3,9

197Au

100

3/2

0,7292

0,594

209Bi

100

9/2

6,84178

-0,46

References

[1]  B. H. Suits: Nuclear Quadrupole Resonance Spectroscopy. In: Vij, D.R. (Ed.) Handbook of Applied Solid State Spectroscopy. Berlin, Springer Verlag (2006) 

[2] H. Chihara, N. Nakamura: Nuclear Quadrupole Resonance Spectroscopy Data. In: O. Madelung (Ed.) Landolt-B├Ârnstein: Numerical Data and Functional Relationships in Science and Technology - New Serie. Berlin - Heidelberg - New York - London - Paris - Tokyo, Springer Verlag (1993) 

To top