Projects

 

FWF - VORONOI++ - Circle Expansion and abstract Voronoi diagrams
This project is concerned with a versatile and influential data structure called the Voronoi diagram, a geometric structure which makes explicit the proximity information exerted by a given set of sites in space. Space partitioning structures of this kind have proven useful not only in computational geometry and more applied areas of computer science, but also in the natural and economical sciences. Fast construction methods and, as a prerequisite, a thorough understanding of their structural and algorithmic properties, are in demand. In this DACH project, we intend to join forces to conduct research on some of these problems. The involved research groups (R. Klein, Bonn; E. Papadopoulou, Lugano; B. Jüttler, Linz; F. Aurenhammer, Graz) have successfully worked on this topic within the framework of EuroGIGA (initiated by F. Aurenhammer) in the Collaborative Research Project VORONOI'', which is documented by numerous relevant publications. Our main goal is to generalize Voronoi diagrams to such an extent that modeling real life scenarios becomes possible. The progress we have already made in previous collaborations has put this goal within our reach. Among our planned research topics are Abstract Voronoi diagrams, cluster Voronoi diagrams, anisotropic diagrams, and skeletal structures in 3D. These topics show the necessary diversity for a successful research and, on the other hand, are strongly interrelated which promises a (continuing) fruitful cooperation between the project partners. Complementing the planned theoretical research, practical aspects will be emphasized. The complexity of the structures to be investigated has reached a level where visualization tools (like interactive applets) are needed, which are intended to be made public later on. To put the findings of this project to practical use, software implementations of the developed algorithms for anisotropic Voronoi diagrams and 3D straight skeletons will be available.
Start: 01.06.2015
End: 31.05.2019
FWF-SASNN - Stochastic Assemblies in Spiking Neural Networks
Recent experimental results have provided valuable insights in the organization of computations in biological neuronal networks. In particular, evidence for two main features of cortical computation is rapidly accumulating. First, neurons operate in concert with other neurons in so-called cell assemblies. Second, the activity of single neurons, synapses, and assemblies in the brain is highly stochastic. These findings force us to rethink how computations are organized in cortical neuronal networks. However, an integrated view on stochasticity and assembly organization in spiking neural networks is still missing. In this project, we will investigate stochastic assembly organization both in organic and artificial spiking neural networks. One emphasis will be the characterization of stochastic assembly activation in highly controllable setups and assembly emergence through plasticity processes. Experiments will be accompanied by theoretical modeling, analysis, and computer simulations that will help to understand the basic mechanisms that give rise to assembly formation. In particular, the investigations in this project will focus on (a) the characterization of stochastic assemblies their emergence through plasticity processes in cultured neural networks and acute brain slices, (b) the control of stochastic assemblies in cultured neural networks and its application to neuroprosthetics, and (c) computations in artificial spiking neural networks based on emergent stochastic assemblies with applications to novel computing and learning devices.
Start: 01.03.2017
End: 28.02.2020
EU - HBP SGA2 - Human Brain Project Specific 2
Understanding the human brain is one of the greatest scientific challenges of our time. Such an understanding can provide profound insights into our humanity, leading to fundamentally new computing technologies, and transforming the diagnosis and treatment of brain disorders. Modern ICT brings this prospect within reach. The HBP Flagship Initiative (HBP) thus proposes a unique strategy that uses ICT to integrate neuroscience data from around the world, to develop a unified multi-level understanding of the brain and diseases, and ultimately to emulate its computational capabilities. The goal is to catalyze a global collaborative effort. During the HBP’s first Specific Grant Agreement (SGA1), the HBP Core Project will outline the basis for building and operating a tightly integrated Research Infrastructure, providing HBP researchers and the scientific Community with unique resources and capabilities. Partnering Projects will enable independent research groups to expand the capabilities of the HBP Platforms, in order to use them to address otherwise intractable problems in neuroscience, computing and medicine in the future. In addition, collaborations with other national, European and international initiatives will create synergies, maximizing returns on research investment. This document describes the HBP’s plans for SGA1, and details what steps will be taken to move the HBP closer to achieving its ambitious Flagship Objectives.
Start: 01.04.2018
End: 31.03.2020
INRC - Principled development of drastically improved architectures and algorithms for computing and learning with spiking neurons on Loihi
We will apply biologically inspired ideas for drastically improving the computational performance and learning capability of recurrent networks of spiking neurons on Loihi through the introduction of working memory capabilities. In addition, we will introduce new principles for creating and improving computing and learning performance of these networks through Learning-to-Learn.
Start: 01.09.2018
End: 31.08.2021
Contact
image/svg+xml

Institute for Theoretical Computer Science
Inffeldgasse 16b/I
8010 Graz

Phone: +43 (0) 316 / 873 - 5811
Fax:       +43 (0) 316 / 873 - 105811
daniela.windisch-scharlernoSpam@tugraz.at


Head
Assoc. Prof. Dipl.-Ing. Dr. techn. Robert Legenstein