[52] Redhammer, G. J.; Tippelt, G.; Stahl, Q.; Benisek, A.: Rettenwander, D., Structural phase transition in NaSICON-type compound Ag3Sc2(PO4)3, Acta Cryst. Sec. B, 2020, revision stage.

[51] Young,D.; Jackson, A.; Fork, D.;  Sadat, S.;  Rettenwander, D.;  Benck, J. D.; Chiang, Y.-M., An Operando Calorimeter for High Temperature Electrochemical Cells, J. Phys. Energy, 2020, revision stage, arXiv.

[50] Ladenstein, L.; Simic, S.; Kothleitner, G.; Wilkening, H. M. R.; Rettenwander, D., A., Anomalies in Bulk Ion Transport in the Solid Solutions of Li7La3M2O12 (M = Hf, Sn) and Li5La3Ta2O12Inorg. Chem., 2020, revision stage.

[49]  Badami, P., Wahab, A.; Redhammer,  Wilkening, H. M. R.; Rettenwander, G. J., D.; Chan, C. K.; Kannan, A. M., Microstructural and transport properties of Li7-xLa3Zr2-xTaxO12 using molten salt and solid-state synthesis route, ACS Energy Mater., 2020, revision stage.

[48] Kuhnert, E.; ...; Rettenwander, D., Lowering the interfacial resistance in LLZTO:PEO composite electrolytes by covalent surface modifications, Cell Press Physical Science, 2020, revision stage.

[47] Philipp, M.; Gadermaier, B.; Posch, P.; Hanzu, I.; Ganschow, S.; Rettenwander, D.; Wilkening, H. M. R.,The Electronic Conductivity of Single Crystalline Ga-Stabilized Cubic Li7La3Zr2O12 — A Technologically Relevant Parameter for All-Solid-State BatteriesAdv. Mater. Inter., 2020, in press, DOI: 10.1002/admi.202000450

[46] Smetaczek, S.; Bonta, M.; Wachter-Welzl, A.; Taibl, S.; Wagner, R. ; Rettenwander, D.; Fleig, J.; Limbeck, A., Spatially resolved Stoichiometry Determination of Li7La3Zr2O12 Solid-state Electrolytes using LA-ICP-OES, J. Anal. At. Spectrom.2020, 35, 972, DOI: 10.1039/D0JA00051E.

[45] Flatscher, F.; Ganschow, S.; Wilkening, M.; Rettenwander, D., The natural critical current density limit for Li7La3Zr2O12 garnets, J. Mater. Chem. A, 2020, in press, DOI: 10.1039/C9TA14177D.

[44] Ladenstein, L.; Lunghammer, S., Wang, Y. E.; Miara, L. J.; Wilkening, M.; Redhammer, G. J.; Rettenwander, D., On the dependence of ionic transport on crystal orientation in NaSICON-type solid electrolytesJ. Phys. Energy, 2020, 2 035003, DOI: 10.1,088/2515-7655/ab71ec.

[43] Gombotz, M.; Rettenwander, D.; Wilkening, M. Lithium-Ion Transport in Li2InBr4 as Seen by Conductivity Spectroscopy and Li NMR, Front. Chem. 2020, 8, 100, DOI: 10.3389/fchem.2020.00100.

[42] Posch, P.; Lunghammer, S.; Berendts, S.; Ganschow, S.; Redhammer, G. J.; Wilkening, A.; Lerch, M.; Rettenwander, D.; Wilkening, H. M. R., Ion Dynamics in Al-Stabilized Li7La3Zr2O12 Single Crystals – Macroscopic Transport and the Elementary Steps of Ion Hopping, Energy Storage Mater., 2020, 24, 200. DOI: 10.1016/j.ensm.2019.08.017.


[41] Di Stefano, D.; Miglio, A.; Robeyns, K.; Filinchuck, Y.; Lechartier, M.; Senyshyn, A.; Ishida, H.; Spannenberger, S.; Prutsch, D.; Lunghammer, S.; Rettenwander, D.; Wilkening, M.; Roling, B.; Kato, Y.; Hautier, G., Superionic diffusion through frustrated energy landscape, Chem., 2019, 5, 1–11, DOI: 10.1016/j.chempr.2019.07.001.

[40] Rettenwander, D.; One Step Closer to realizing Solid-State Batteries with cubic Li7La3Zr2O12 Garnets, Chem., 2019, 5, 1695-1696, DOI: 10.1016/j.chempr.2019.06.017.

[39] Hanghofer, I.; Gadermaier, B.; Wilkening, A.; Rettenwander, D.; Wilkening, H. M. R., Lithium ion dynamics in LiZr2(PO4)3 and Li1.4Ca0.2Zr1.8(PO4)3, Dalton Trans., 2019, Advanced Article, DOI: 10.1039/C9DT01786K.

[38] Benck, J. D.; Jackson, A.; Young, D.; Rettenwander, D.; Chiang, Y.-M., Producing High Concentrations of Hydrogen in Palladium via Electrochemical Insertion from Aqueous and Solid Electrolytes, Chem. Mater., 2019, 31, 4234-4245,10.1021/acs.chemmater.9b01243.

[37] Hanghofer, I.; Brinek, M.; Eisbacher, S. L.; Uitz, M.; Henning, V.; Bitschnau, B.; Volck, M.; Hennige, V.; Hanzu, I.; Rettenwander, D.; Wilkening, H. M. R., Substitutional disorder: Structure and ion dynamics of the agryodites Li6PS5Cl, Li6PS5Br, and Li6PS5I, Phys. Chem. Chem. Phys., 2019, 21, 8489-8507, DOI: 10.1039/C9CP00664H.

[36] Wachter-Welzl, A.; Smetaczek, S.; Brunauer, G. C.; Bonta, M.; Rettenwander, D.; Taibl, S.; Limbeck, A.; Amthauer, G.; Fleig, J., Li-ion conductivity fluctuations within Li7La3Zr2O12 solid electrolytes and their relation to local stoichiometric changes, J. Mater. Chem., 2019, 7, 6818-6831, DOI: 10.1039/C9TA00356H. 

[35] Benck, J.; Rettenwander, D.; Jackson, A.; Young, D.; Chiang, Y.-M., Apparatus for Operando X-ray Diffraction of Fuel Electrodes in High Temperature Solid State Electrochemical Cells, Rev. Sci. Instrum., 2019, 90, 023910, DOI: 10.1063/1.5050999.

[34] C. Hiebl, D. Young, R. Wagner, H. M. R. Wilkening, G. J. Redhammer, D. Rettenwander, Proton Bulk Diffusion in Cubic Li7La3Zr2O12 Garnets as Probed by Single X-Ray Diffraction, 2019, 123, 1094-1098, DOI: 10.1021/acs.jpcc.8b10694.


[33] Swamy, T.; Park, R.; Sheldon, B.; Rettenwander, D.; Porz, L.; Berendts, S.; Uecker, R.; Carter, C.; Chiang, Y.-M. Lithium Metal Penetration Induced by Electrodeposition through Solid Electrolytes: Example in Single-Crystal Li6La3ZrTaO12 Garnet, Adv. Energy Mater., 2018, 165, 16, A3648-A3655, DOI: 10.1149/2.1391814jes.

[32] Prutsch, D.; Gadermaier, B.; Brandstätter, H.; Pregartner, V.; Stanje, B.; Wohlmuth, D.; Epp, V.; Rettenwander, D.; Wilkening, H. M. R., Anomalous spin relaxation in nanocrystalline β-Li3PS4 reveals snake-like Li diffusion in an isotropic matrix, Chem. Mater., 2018, 30, 7575-7586, DOI: 10.1021/acs.chemmater.8b02753.

[31] Hanghofer, I.; Redhammer, G. J.; Rohde, S.; Hanzu, I.; Senyshyn, A.; Wilkening, M.; Rettenwander, D., Untangling Structure and Dynamics of Lithium-Rich Anti-Perovskites Envisaged as Solid Electrolytes for Batteries, Chem. Mater, 2018, 30, 8134-8144, DOI: 10.1021/acs.chemmater.8b02568.

[30] Rettenwander, D.; Wilkening, M. Lithium-Festelektrolyte für Energiespeicher, Nachrichten aus der Chemie, 2018, 499-504. DOI: 10.1002/nadc.20184066404

[29] Lunghammer, S.; Prutsch, D.; Breuer, S.; Rettenwander, D.; Hanzu, I.; Ma, Q.; Tietz, F.; Wilkening, M., 23Na NMR spin-lattice relaxation reveals ultrafast Na ion dynamics in the solid electrolyte Na3.4Sc0.4Zr1.6(SiO4)2PO4, Scientific Reports, 2018, 8, 11970, DOI: 10.1038/s41598-018-30478-7.

[28] Lunghammer, S.; Ma, Q.; Rettenwander, D.; Tietz, F.; Wilkening, M., Bulk and grain-boundary ionic conductivity in sodium zirconophosphosilicate Na3Zr2(SiO4)2PO4 (NASICON), Phys. Chem. Lett., 2018, 701, 147-150, DOI: 10.1016/j.cplett.2018.04.037.

[27] Rettenwander, D.; Redhammer, G.; Guin, M.; Pristat, S.; Tietz, F.; Fleig. J., Arrhenius behaviour of the bulk Na-ion conductivity in Na3Sc2(PO4)3 single crystals observed by microcontact impedance spectroscopy, Chem. Mater., 2018, 30, 1776-1781, DOI: 10.1021/acs.chemmater.8b00179.

[26] Rettenwander, D.; Wagner, R.; Reyer, A.; Bonta, M.; Cheng, L.;  Doeff, M. M.; Limbeck, A.; Wilkening, M.; Amthauer, G. Interface instability of Fe-stabilized Li7La3Zr2O12 versus Li metal, 2018, 122, 3780-3785, DOI: 10.1021/acs.jpcc.7b12387.


[25] Rupp, J.; Rettenwander, D.; Kilner, J.; Doeff, M. M. Editorial for the JECR special issue on all solid-state batteries: J. Electroceramics, 2017, DOI: 10.1007/s10832-017-0102-1.

[24] Kubicek, M.; Wachter-Welzl, A.; Rettenwander, D.; Wagner, R.; Amthauer, G.; Hutter, H.; Fleig, J. Oxygen Vacancies in Fast Lithium-Ion Conducting Garnets: Chem. Mater., 2017, 7189-7196, DOI: 10.1021/acs.chemmater.7b01281.

[23] Porz, L.; Swamy, T.; Sheldon, B.; Rettenwander, D.; Thaman, H.; Frömling, T.; Berendts, S.; Uecker, R.; Chiang, Y.-M. Lithium Plating Mechanism in Li-ion Conducting Solid electrolytes: Adv. Energy Mater., 2017, 1701003, DOI: 10.1002/aenm.201701003.

[22] Wachter-Welzl, A.; Kirowitz, J.; Wagner, R.; Smetaczek, S.; Brunauer, G. C.; Bonta, M.; Rettenwander, D.; Taibl, S.; Limbeck, A.; Amthauer, G.; Fleig, J. The origin of conductivity variation in Al-stabalized Li7La3Zr2O12, Solid State Ionics, 2018, 319, 203-208, DOI: 10.1016/j.ssi.2018.01.036.

[21] Stanje, B.; Rettenwander, D.; Breuer, S.; Uitz, M.; Berendts, S.; Lerch, M.; Uecker, R.M Redhammer, G.; Hanzu, I.; Wilkening, M. Solid Electrolytes: Extremely Fast Charge Carriers in Garnet-Type  Li6La3ZrTaO12: Annal. Phys., 2017, 529, 1700140, DOI: 10.1002/andp.201700140.

[20] Giarola, M.; Sanson, A., Tietz, F.; Pristat, S.; Dashjav, Rettenwander, D.; Redhammer, G. J.; Mariotto, G. Structure and vibrational dynamics of NASICON-type LiTi2(PO4)3: J. Phys. Chem. C, 2017, 121, 3697-3706, DOI: 10.1021/acs.jpcc.6b11067.


[19] Welzl, A.; Wagner, R.; Rettenwander, D., Taibl, S.; Amthauer, G. Microelectrodes for local conductivity and degradation measurements on Al doped Li7La3Zr2O12 garnets: J. Electroceramics, 2016, 37, 1-6, DOI: 10.1007/s10832-016-0058-6.

[18] Wagner, R.; Rettenwander, D.; Schmidt, W.; Tippelt, G.; Redhammer, G.; Wilkening, M.; Amthauer, G. The influence of the unit-cell parameter a0 on structure and Li-ion dynamic studied on cubic Li7-xLa3Zr2-xBixO12 garnet: Inorg. Chem, 2016, 55, 12211-12219, DOI: 10.1021/acs.inorgchem.6b01825.

[17] Rettenwander, D.; Wagner, R.; Langer, J.; Maier, M. E.; Wilkening, M.; Amthauer, G.; Crystal chemistry of "Li7La3Zr2O12" garnet doped with Al, Ga, and Fe: a short review on local structures as revealed by NMR and Mößbauer spectroscopy studies: Eur. J.. Mineral., 2016, 28, 619, DOI: 10.1127/ejm/2016/0028-2543-629.

[16] Redhammer, G. J.; Rettenwander, D.; Pristat, S.; Dashjav, E.; Kumar, C. M. N.; Topa, D.; Tietz, F. A single crystal X-ray and powder neutron diffraction study on NASICON-type Li1+xAlxTi2−x(PO4)3 (0 ≤ x ≤ 0.5) crystals: Implications on ionic conductivity: Solid State Sci., 2016, 60, 99-107, DOI: 10.1016/j.solidstatesciences.2016.08.011.

 [15] Wagner, R.; Redhammer, G. Rettenwander, D.; Tippelt, G.; Welzl, A.; Taibl, S.; Franz, A.; Lottermoser, W.; Amthauer, G. Fast Li-ion conducting garnet related Li7-3xFexLa3Zr2O12 with uncommon I-43d structure: Chem. Mater. 2016, 28, 5943-5951, DOI: 10.1021/acs.chemmater.6b02516.

[14] John, M.; Heuss-Aßbichler, S.; Ullrich, A.; Rettenwander, D. Purification of heavy metal loaded wastewater from electroplating industry under synthesis of delafossite (ABO2) by “Lt-delafossite process: Water Res. 2016, 100, 98-104, DOI: 10.1016/j.watres.2016.04.071.

[13] Rettenwander, D.; Preishuber-Pflügl, F.; Cheng, L.; Wagner, R.; Welzl, A.; Suard, E.; Redhammer, G.; Doeff, M. M.; Wilkening, M.; Fleig. J.; Amthauer, G. Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes: Chem. Mater., 2016, 28, 2384-2392, DOI: 10.1021/acs.chemmater.6b00579.

[12] Wagner, R.; Redhammer, G. Rettenwander, D.; Senyshyn, A.; Schmid, W.; Wilkening, M.; Amthauer, G. Crystal structure of garnet-related Li-ion conductor Li7-3xGaxLa3Zr2O12: Fast Li-ion conduction caused by a different cubic modification: Chem. Mater. 2016, 28, 1861-1871, DOI: 10.1021/acs.chemmater.6b00038.

[11] Rettenwander, D.; Welzl, A.; Pristat, S.; Tietz, F.; Redhammer, G.; Fleig. J. A micro-contact impedance study on NASICON-type Li1+xAlxTi2-x(PO4)3 (0 < x < 0.5 single crystals 2015, J. Mater. Chem. A 2016,4, 1506-1513, DOI: 10.1039/C5TA08545D.


[10] John, M.; Heuss-Aßbichler, S.; Park, S.-H.; Benka, G.; Petersen, N.; Rettenwander, D.; Horn, S. Low-temperature synthesis of CuFeO2 crystals (Delafossite) at 70 °C: A new process solely by precipitation and ageing: J. Solid. State. Chem. 2015, 233, 390-396, DOI: 10.1016/j.jssc.2015.11.011.

[9] Rettenwander, D.; Welzl, A.; Fleig, J.; Musso, M.; Amthauer, G. Synthesis, Crystal Chemistry, and Electrochemical Properties of cubic Phase Li7La3Zr2O12 Garnet – The substitution of Zr4+ by Mo6+: Inorg. Chem. 2015, 54, 10440-10449, DOI: 10.1021/acs.inorgchem.5b01895.

[8] Bottke, P.; Rettenwander, D.; Schmidt, W. Amthauer, G. Wilkening, M. Ion Dynamics in Solid Electrolytes: NMR Reveals the Elementary Steps of Li+ Hopping in the Garnet Li6.5La3Zr1.75Mo0.25O12: Chem. Mater. 2015, 27, 6571-6582, DOI: 10.1021/acs.chemmater.5b02231.

[7] Rettenwander, D.; Langer, J.; Schmidt, W.; Arrer, C.; Harris, K.; Terskikh, V.; Goward, G.; Wilkening, M.; Amthauer, G. Site Occupation of Ga and Al in Stabilized Cubic Li7–3(x+y)GaxAlyLa3Zr2O12 Garnets As Deduced from 27Al and 71Ga MAS NMR at Ultrahigh Magnetic Fields: Chem. Mater. 2015, 27, 3135–3142, DOI: 10.1021/acs.chemmater.5b00684.

[6] Rettenwander, D.; Geiger, C. A.;  Tribus, M.; Tropper, P.; Wagner, R.; Tippelt, G.; Lottermoser, W.; Amthauer, G. The Solubility and Site Preference of Fe3+ in Li7-3xFexLa3Zr2O12 Garnets:  Solid State Chem. 2015, 266–271, DOI: 10.1016/j.jssc.2015.01.016.


[5] Meister, P.; Chapligin, B.; Picard, A.; Meyer, H.; Fischer, C.; Rettenwander, D.; Amthauer, G.; Vogt, C.; Aiello, I. W. Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific - a modern analogue for banded iron/chert formations?: Geochim. Cosmochim. Acta, 2014, 137, 188-207, DOI: 10.1016/j.gca.2014.03.035.

[4] Rettenwander, D.; Geiger, C. A.; Tribus, M.; Tropper, P; Amthauer, G. A Synthesis and Crystal Chemical Study of the Fast Ion Conductor Li7−3xGaxLa3Zr2O12 with x = 0.08 to 0.84: Inorg. Chem. 2014, 53, 6264-6269, DOI: 10.1021/ic500803h.

[3] Rettenwander, D.; Blaha, P.; Laskowski, R.; Schwarz, K.; Bottke, P.; Wilkening, M.; Amthauer, G. DFT Study of the Role of Al3+ in the Fast Ion-Conductor Li7−3xAl3+xLa3Zr2O12 Garnet: Chem. Mater. 2014, 26, 2617-2623, DOI: 10.1021/cm5000999.


[2] Rettenwander, D.; Geiger, C. A.; Amthauer, G. Synthesis and Crystal Chemistry of the Fast Li-Ion Conductor Li7La3Zr2O12 Doped with Fe: Inorg. Chem. 2013, 52, 8005-8009, DOI: 10.1021/ic400589u.


[1] Berger, R. J. F., Rettenwander, D., Spirk, S., Wolf, C. Patzschke, M.; Ertl, M.; Monkowius, U. Mitzel, N. W., Relativistic effects in triphenylbismuth and their influence on molecular structure and spectroscopic properties: Phys. Chem. Chem. Phys. 2012,14, 15520-15524., DOI: 10.1039/C2CP43471G.

Book chapters

Wagner, R.; Rettenwander, D.; Amthauer, G. (2017) Li-ion conducting oxide garnets. In: Heuss-Aßbichler, S.; Amthauer, G.; John, M. (eds): Highlights in Applied Mineralogy. DeGruyter.