

ESA Space Weather Activities

Juha-Pekka Luntama SpaceTech Alumni Symposium 23.07.2021

Space Safety Programme

Protection of our planet, humanity,

and assets in space and on Earth from dangers originating in Space

Space weather impacts on infrastructure

eesa Solar cell degradation Astronaut radiation Radiation damage, charging/discharging Increased atmospheric drag Satellite navigation Telecommunication errors disturbances Increased radiation doses in aviation Geomagnetically Aurora induced currents in power grid Errors in directional drilling

SWE IMPACT ESTIMATE IN 2016 CBA

Cost/Benefit	'Do nothing scenario'	'Do ESA scenario'	Value added of ESA services
User domain benefits			
Satellite operations	- €293 M	- €267 M	€26 M
Launch operations (lower bound**)	- €0.3 M	- €0.1 M	€0.2 M
Resource exploitation	- €327 M	- €135 M	€192 M
Power grids operations	- €5,771 M	- €4,546 M	€1,225 M
Aviation	- €3,312 M	- €3,066 M	€246 M
Logistic/Road transport (lower bound**)	- €3,432 M	- €2,888 M	€544 M
Investment benefits GDP impact***	None	€904 M	€904M
Total benefits	- €13,135 M	-€9,998 M	- € 3,137 M
ESA SWE Programme Costs (CAPEX + OPEX)	None	- €502 M	- €502 M
TOTAL	- €13,135 M	- €10,500 M	€ 2,635 M

Benefit to Cost ratio for SWE is 6.25

COST OF EXTREME EVENT IN 2016 CBA

Domain	2016 (year 1)	2024 (year 9)	2032 (year 17)
Spacecraft design and operations	- €912.9 M	- €1,123.2 M	- €1,389.4 M
Launch operations	- €0.008 M	- €0.037 M	- €0.051 M
Aviation	- €6,635.6 M	- €11,139.8 M	- €18,701.5 M
Resource exploitation	- €197.5 M	- €234.9 M	- €279.5 M
Power system operators	- €5,630.5 M	- €6,364 M	- €7,195.2 M
Road & Transportation	- €1,595.4 M	- €1,783 M	- €1,992.8 M
TOTAL	- €14,971.9 M	- €20,644.9 M	- €29,558.4 M

ESA SPACE WEATHER SYSTEM TODAY

- 29 pre-operational services based on >200 products
- European Service Network of >50 Expert Groups
- > 1600 registered users
- > 1.9M hits on service portal monthly
- D3S Hosted payload missions
- Groundbased sensor system enhancements
- Coordinated Communication Protocol

		۹
Spacecraft Design	Spacecraft Operation	
Human Spaceflight	Launch Operation	607 673 684 845
Transionospheric Radio Link	Space Surveillance and Tracking	
Power Systems Operation	Aviation	
Resource Exploitation System Operation	Pipeline Operation	
Auroral Tourism	General Data Service	

SERVICES FOR SPACECRAFT OPERATORS

Solar activity forecast

SEP alerting

Satellite charging

Ionospheric disturbances

+

S2P SPACE WEATHER SYSTEM OBJECTIVES

ENHANCED SPACE WEATHER MONITORING

→ THE EUROPEAN SPACE AGENCY

· e esa

DISTRIBUTED SPACE WEATHER MONITORING SYSTEM (D3S)

Monitoring of SWE impact near Earth:

- Magnetic field, neutral/charged particle, plasma and micro-particle environment measurements, auroral imaging, ...:
 - Hosted Payloads
 - Dedicated Small/CubeSats
 - ➢ LEO/MEO/HEO/GEO
 - Ground based observations

HOSTED PAYLOAD ACHIEVEMENTS

ICARE-NG HOTBIRD[™] F1 2022 + ERSA on Lunar Gateway 2027

NGRM EDRS-C 2019 (as RMU on MTG, Metop-SG,

💻 🚝 💻 🚺

MiniRMU Lunar Pathfinder 2023

NGRM on EDRS-C

SOSMAG on GK-2A

ICARE-NG

on HB F1

ERSA on Lunar Gateway MiniRMU on Lunar Pathfinder

HOSTED PAYLOADS – NEXT STEPS

S2P P1

- Hosted payload radiation monitor in LEO
- Development of miniaturised radiation/magnetic field instrument package
 - Base on RadCube IOD to be launched in August

S2P P2

- Magnetometer in GEO at European Longitudes
- In-situ package for MEO s/c
- Radiation monitors on s/c in undersampled regions
- Environment monitoring package in large constellations
- Continuous radiation monitoring in Lunar orbit

D3S SMALLSAT MISSION STUDY

SWE SmallSat Phase A/B:

- Continuous auroral oval monitoring and multi-point in-situ measurements of Earth's magnetosphere, ionosphere and thermosphere
- Payload candidates:
 - WFAI (optical & FUV)
 - Magnetometer
 - Radiation Monitor
 - Multi-Needle Langmuir Probe
 - Plasma Analyser
 - Oxygen Sensor
 - GNSS receiver
 - Microparticle Detector

D3S SMALLSAT MISSION STUDY

SmallSat Phase A/B:

Constellation of 3-6 small satellites in elliptical LEO SSO (350/300 km - 1500/2500/4000 km, TBC)

D3S NANOSATELLITE MISSIONS

- First Phase 0/A study in progress
- Objective:
 - Initial mission concept study to assess the feasability (latency, lifetime, reliability) to use nanosatellites for operational space weather monitoring in near-Earth space.
- Future opportunities:
 - Commercial nanosatellite systems as a service
 Marketing space weather data and products
 Nanosatellite/SmallSat based tailored services

LAGRANGE MISSION TO L5

LAGRANGE MISSION SCENARIO

SPACE WEATHER CAPABILITY CHALLENGES

- End user needs:
 - Early warnings and event based alarms
 - ➢ Nowcasts and <u>forecasts!!</u>
 - New space weather capabilities
 - Driven by evolving user needs
 - End-to-end modelling, accuracy, timeliness
 - Customer tailored service
 - Sustainable monitoring system
- Provision of operational 24/7 services
- New service concepts?

·eesa

THANK YOU

swe.ssa.esa.int www.esa.int @esaspaceweather

