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RESULTS – CLEAN DATA: SUMMARY TEST CASES 

Comparison of trajectories
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RESULTS – NOISY DATA: SUMMARY TEST CASES 

Comparison of trajectories

Case 3
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Signal c1 c2 c3 Average 

Acceleration (clean data) (Experiment 1) 5.29 1.01 8.71 5.01 

Acceleration (noisy data) (Experiment 4) 5.11 1.07 28.8 11.7 

Height (noisy) (Experiment 5) 25.3 27.9 14.5 22.6 

Controls 0.074 0.077 0.083 0.078 
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Experiment 4 (appr. acc.)

Experiment 5 (trajectories)

Experiment 6 (switch 1/2)

Solution

noisy Height

SYSTEM IDENTIFICATION

From: Algorithms for Identification of Nonlinear Differential Equations for Complex Dynamical Systems based on Experimental Data, S.Vössner, T.Buchsbaum, IFORS 2005

OBJECTIVE

Identification of the differential equations of motion of complex dynamic systems

(like aircrafts) based on their 

• trajectories and 

• control parameters. 

using an evolutionary approach and changing the identification criterion 

depending on the available information content of the training data.
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System –

Identification

CHALLENGE

The aircraft as a mechanical system is being described by means of ordinary differential 

equations (ODEs). 

• For simple systems, direct modeling by inductive methods (deriving mathematical models 

based on the principles and laws of physics and engineering) is possible.

When systems become more complex and underlying mechanisms are not clear any more, 

or information about a system can only be produced by means of (noisy) measurements, 

other approaches have to be used:

• We are especially interested in finding physical meaningful models of mechanical 

systems based on noisy data. Therefore we are seeking second order ODEs which relate 

the dynamic behavior (e.g. the trajectories of an aircraft under certain control settings) to its 

causes (accelerations/forces like lift and drag).

• Since we do not know the model structure for a certain problem a priori, we can not simply 

optimize some model parameters of a pre-defined model. 

• Therefore we need to design algorithms that also generate the model structure, in a way 

that the resulting model explains the observed data in the best possible and yet physical 

meaningful way.

MODELS USED IN SYSTEM IDENTIFICATION

*) Examples: FIR (finite impulse response), ARMAX (AutoRegressive Moving Average with eXogenous inputs), Box-Jenkins, NARMAX 

(Nonlinear ARMAX), neural networks and wavelets, ...

White-Box Models:

All necessary information about a system is given. From underlying principles the model can be 

derived (mechanistic modeling approach). 

Black-Box Models:

Models without any reference to the physical background (no a priori information).

The model parameters are basically used to fit the model behavior to the measured system data  

- often impossible to associate them with physical quantities of the system. Often used in system 

identification*).

Grey-Box Models:

They are a blend of the two models above:

• The model structure may be deduced from available information about the system.

• There are additional adjustment-parameters which could be tuned to compensate the lack of 

knowledge and improve the fit to the data. 

In many cases, values of certain parameters can be associated with some (unknown) physical 

parameters. That helps to understand and describe the considered system.

MODEL GENERATION IN SYSTEM IDENTIFICATION
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Automatic Generation by Means of Evolutionary Computation:

This covers the whole identification loop (excl. the measurement

process) by using algorithms based on the principles of biological 

evolution generating 

• model structures and

• variables, constants, parameters, and mathematical expressions

at the same time.

Semi-Automatic Generation of Models:

• Tools are used which assist the engineer in the model structuring 

task. 

• There are strategies available for model simplification or model

improvement (e.g. grow methods in neural network training).

Manual Model Generation:

• For each of the described steps, appropriate tools (numerical 

methods) could be applied manually and supervised by the 

engineer or researcher. 

• Results are analyzed and decisions are made by human 

expertise. 

• Model structure is modified by the engineer.

GENETIC PROGRAMMING
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Genetic programming allows to automatically 

generate programs or other kind of structures, most 

commonly stored as trees. These trees are made up 

of predefined functions (operators) and terminals 

(e.g. variables, constants). 

Starting from an initial population of structures (called 

individuals) new individuals are created by mating 

promising individuals (crossover). Individuals with 

better performance (fitness, objective value) are 

selected for mating with higher probability than 

others. 

Offsprings created from them are likely to inherit the 

"good properties" from the parents. 

Mutation is applied in addition to ensure a sufficient 

degree of search space exploration (avoiding local 

convergence)

IDENTIFICATION CRITERIA
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where:

y is a vector of measurement data, 

u the control input, and 

the vector containing the model output. 

Output-Error-Approach:
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Identification Criteria:

System of two first order ODEs:

Resulting trajectory:

Disadvantage: algorithmic complexity (high computational cost for solving the ODE 

numerically with good precision and stability). 

Resulting velocity:

One ODE integration only. Disadvantage: numerical differentiation of y is just an 

approximation of v, the information content will be less and signal-to-noise ratio 

smaller. 

Direct approximation of acceleration:

No ODE solving is required. The “true” a is approximated by numerically calculating 

the second derivative of y, the signal-to-noise ratio decreases further 

GENETIC PROGRAMMING FOR SYSTEM IDENTIFICATION

Depending on settings and selection criteria as well as the function and terminal sets, model 

types range from black-box symbolic regressions up to strongly-typed, dimensionally aware 

expressions. Complexity of the models is controllable by using appropriate information 

criteria or simply by restricting the individuals’ tree sizes.

Weaknesses of Current Approaches

• Available GP methodologies are not sophisticated enough to handle complex 

problems efficiently. Babovic et al. (2000) showed that for complex systems a simple 

output error criterion does not allow the GP algorithm to find a good solution.

• Another major problem is the generation of constants (parameter identification) by GP, 

which works not very efficiently. Most of the researchers apply additional optimization 

methods (e.g. genetic algorithms, simulated annealing, and local search strategies) to 

optimize model parameters, once the GP system generated a structure. An approach that 

is not useful if one is interested in physical meaningful combinations of basic 

constants, e.g. the mass, the gravitational constant, densities, etc. 

CHOOSING THE MOST APPROPRIATE IDENTIFICATION CRITERION

Because of its reduced computational complexity for optimization, information criterion 

"acceleration" is preferred to criteria "velocity" and "displacement". 

When the data’s information content is exploited and further training would lead approximation 

already noise (over-fitting) the criterion has to change. Therefore the algorithm will switch to a 

criterion with better signal-to-noise ratio.

Basic Algorithm

1. Select criterion/data with least computational costs with 

respect to optimization (algorithmic complexity)

2. Use it for model building as long as there is useful 

information content

3. If stopping criteria are fulfilled: stop identification 

procedure

4. If not: Select other criterion/data with more information 

content and lowest possible algorithmic complexity

5. Continue with step 2

COMPUTATIONAL EXAMPLE / EXPERIMENTAL RESULTS
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TEST CASES – for u(t)

u(t)

y(t)

v(t)

noiseless

noisy

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

-600

-500

-400

-300

-200

-100

0

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

0 20 40 60 80 100 120

0

0,5

1

1,5

2

2,5

3

0 20 40 60 80 100 120

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 20 40 60 80 100 120

-120

-100

-80

-60

-40

-20

0

20

0 20 40 60 80 100 120

0

2

4

6

8

10

12

14

16

18

0 0,5 1 1,5 2 2,5 3

-25

-20

-15

-10

-5

0

5

0 0,5 1 1,5 2 2,5 3

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 0,5 1 1,5 2 2,5 3

Case 1 Case 2 Case 3

ERROR CALCULATION AND FITNESS MEASURE

Error for each test case:
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21 where Nk is the number of intervals for 

case k, and eki is the error for the ith

interval of case k.

Error for all test cases:

N
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kk CaseErrorcError
1

where N is the number of cases and ck is a 

weight to emphasize certain cases. In our 

cases ck is 1/3 for all three cases. 

Normalized Fitness:

Error
fitness

1

1 which is bounded between 0 and 1. 

Lower Error causes a higher fitness measure. 

EXPERIMENTAL SETUP

Experiment Identification Criterion Test Set + ODE Solver Validation Set + 

ODE Solver 

Experiment 1 
)(ˆ

)(
ua

t

uv calculated acceleration 

from clean data; 

no ODE solving required 

clean data (y(u)) 

RK-4 (20/interval) 

Experiment 2 2d)(ˆ)( tuauy trajectory (clean data); 

RK-4 (10/interval) 

clean data (y(u)) 

RK-4 (20/interval) 

Experiment 3 same as Experiment 1 for 

40 generations, then 

same as Experiment 2 

same as for Experiment 1 

for 40 generations, then 

same as for Experiment 2 

clean data (y(u)) 

RK-4 (20/interval) 

Experiment 4 
)(ˆ

)(
ua

t

uv calculated acceleration 

from noisy data; 

no ODE solving required 

clean data (y(u)) 

RK-4 (20/interval) 

Experiment 5 2d)(ˆ)( tuauy trajectory (noisy data), 

RK-4 (10/interval) 

clean data (y(u)) 

RK-4 (20/interval) 

Experiment 6 same as Experiment 4 for 

40 generations, then 

same as Experiment 5 

same as for Experiment 4 

for 40 generations, then 

same as for Experiment 5 

clean data (y(u)) 

RK-4 (20/interval) 
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RESULTS – ODE IDENTIFICATION – GP RAW OUTPUT

Best of Experiment 3 – fitness= 0.5538:

<ADD><ADD><ADD><ADD><SUB><U0/><M/></SUB><ADD><HALF/><MUL><X1/

><MUL><X1/><U0/></MUL></MUL></ADD></ADD><SUB><SUB><SUB><SUB><U0

/><M/></SUB><MUL><M/><HALF/></MUL></SUB><G/></SUB><U0/></SUB></ADD

><ADD><ADD><SUB><SUB><SUB><U0/><M/></SUB><MUL><M/><HALF/></MUL

></SUB><U0/></SUB><ADD><HALF/><MUL><X1/><MUL><X1/><U0/></MUL></M
UL></ADD></ADD><SUB><G/><MUL><M/><HALF/></MUL></SUB></ADD></ADD

><ADD><SUB><SUB><SUB><MUL><MUL><X1/><C/></MUL><MUL><X1/><U0/></

MUL></MUL><M/></SUB><SUB><M/><MUL><MUL><X1/><HALF/></MUL><MUL>

<X1/><U0/></MUL></MUL></SUB></SUB><M/></SUB><ADD><ADD><SUB><SUB>

<SUB><HALF/><M/></SUB><MUL><M/><HALF/></MUL></SUB><U0/></SUB><AD

D><HALF/><MUL><X1/><MUL><X1/><U0/></MUL></MUL></ADD></ADD><SUB>
<MUL><MUL><X1/><HALF/></MUL><MUL><X1/><U0/></MUL></MUL><M/></SU

B></ADD></ADD></ADD> 

AD0
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M HALF

RESULTS – ODE IDENTIFICATION – GP RAW OUTPUT

*) Using Mathematica

Best of Experiment 3 – simplified*:

2)4(10
2

ˆ vuc
m

a w

20.05425-9.975ˆ vua

Analytical solution:

20.053125-9.807 vua

2

2

1
vAuc

m
ga w

Comparison:

• very good numerical approximation

• u v2 – term qualitatively correct

• physical constants not always used correctly
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Substituting the constants for m and cw :

IDENTIFICATION OF NONLINEAR DIFFERENTIAL EQUATIONS

MODEL


