

Dr. Rainer Puchleitner 19. April 2023

*based on legislation for European semi-truck (class 8)

Compressed Hydrogen Storage System

Compressed Hydrogen Storage System (CHSS)

Challenges

Vessel development

- Virtual development considering boss, liner, composite
- Efficiency decrease of composite at higher thickness
- Sealing concept for low temperature and low pressure

System development

- 1D-Simulation of system performance at high flow refueling
- CFD-Simulation for optimization of valves and pipes
- Validation of simulation with test system (700 bar)

Compressed Hydrogen Storage System (CHSS)

Prototype and Validation

Demonstrator consortium project

- Fuel Cell for Heavy Duty (FC4HD)
- TÜV Certification for on-road operation Q2/2023

Storage vessels - facts & figures

- Operating pressure: 700 bar
- Dimensions: 613 x 2050 mm
- Weight: 215 kg
- Water volume: 381 L
- Gross capacity: 15.3 kg

MAGNA

Development focus and Challenges

Development focus

- Improvement of filling capacity
- Improvement of dormancy time > 7 days
- Vacuum generation below 60h
- Improvement of multi-layer-insulation application

Challenges

- Subcooled LHSS for zero loss at refueling
- Suspension and pipe routing for low heat influx
- Cryo-Connection-Line for Dual-Tank refueling
- Boil-Off-Management system

Compressed Hydrogen Storage System (CHSS)

Development focus and Challenges

Development focus

- Improvement of filling capacity
- Improvement of dormancy time > 7 days
- Vacuum generation below 60h
- Improvement of MLI application

Challenges

- Subcooled LHSS for zero loss at refueling
- Suspension and pipe routing for low heat influx
- Cryo-Connection-Line for Dual-Tank refueling
- Boil-Off-Management system

Cryogenic connection pipe

- Movements of interfaces
- easy mounting/dismounting from tank
- encased for vibration and environment

Boil-Off Management System

- fully mechanical system
- negligible H2 emission at -40°C start up
- optimized for dual-tank system

Liquid Hydrogen Storage System (LHSS)

Prototype Development & Testing

Funded R&D project

- Demonstration of basic vessel functions
 - refuel \checkmark
 - delivery √
 - store & hold √
- TÜV Certification for rig testing

Storage vessels - facts & figures

Dimensions: D: 711mm, L: 2480mm

380kg

620L

120h (50% filling level)

36kg H₂ (95% and 4bar)

- Weight:
- Water volume
- Dormancy time
- Gross capacity

subcooled Liquid Hydrogen Storage System (sLHSS)

Series Concept

Future customer projects

- Subcooled LHSS for zero loss during refueling ۰
- Cryo-Connection-Line for Dual-Tank refueling ۰
- Boil-Off-Management system
- Suspension and pipe routing for low heat influx ۰

Storage Vessels - Facts & Figures

Dimensions: D: 711mm, L: 2500mm .

755L

- Weight: 480kg ۰
- Water volume: .
- Dormancy time: 170h (50% filling level)
- Gross capacity: ۰

.

Conclusion and Outlook

- CHSS and LHSS are viable technologies for heavy duty trucks
- Deciding factor: availability of infrastructure
- Expected SOP of large-scale programs after 2030