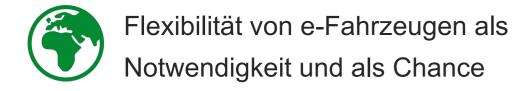


Das wirtschaftliche Flexibilitätspotential von e-Fahrzeugflotten


Guntram Preßmair Jakob Papouschek Martin Mayr Michael Thelen

EnInnov, 16.02.2024

Warum?

ISO15118 bidirektionale Kommunikation

Geschäftsmodell zur Nutzung des Flexibilitätspotentials von **Sharing-Flotten** (Carsharing, Firmenflotten)

Smart charging vs. V2G

Wie groß ist der monetäre Mehrwert von Vehicle-to-Grid (V2G) Anwendungen gegenüber unidirektionalem Smart Charging?

Smart Charging

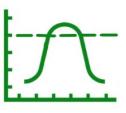
- Unidirektional
- Gesteuert

Vehicle-to-Grid (V2G)

- Bidirektional
- Einspeisung lokal oder ins Netz

Wozu Flexibilität nutzen?

Use Cases in GAMES


Energielieferanten

- Portfoliooptimierung

Energiegemeinschaften

Kollektive Eigenverbrauchsoptimierung

Verteilnetzbetreiber

- Spitzenlastmanagement

Übertragungsnetzbetreiber

- Regelenergiemarkt

Fallstudie: Windkraft Simonsfeld AG

- Fuhrpark mir 26 e-Autos
 - v.a. Renault Zoe, Hyundai Kona und VW ID3
 - Teilweise Poolfahrzeuge
 - Nutzung dienstlich und privat
- Ladeinfrastruktur mit 26 AC-Ladepunkten
- 70 kW_p PV-Anlage

Das GAMES Modell

- Lineares Optimierungsmodell in GAMS ("dynamic economic dispatch model")
- Modellierung aus Sicht der Ladestation
 - Fahrzeuge stehen als Flexibilität während Parkdauer zur Verfügung

Mobilitätsdaten real

- Fahrtenbücher
- Ladestationen

Mobilitätsdaten aufbereitet

- Batterieeigenschaften
- Kilometerleistung
- Ankunfts-/Abfahrtszeiten

Optimierung

Minimiere Energiekosten

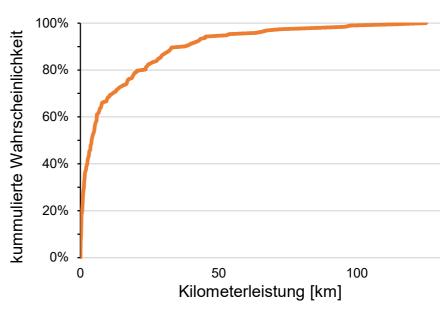
Optimiertes Ladeverhalten

- Geladene Energiemenge
- Entladene Energiemenge (V2G)
- Kosteneinsparungen

Mobilitätsdaten

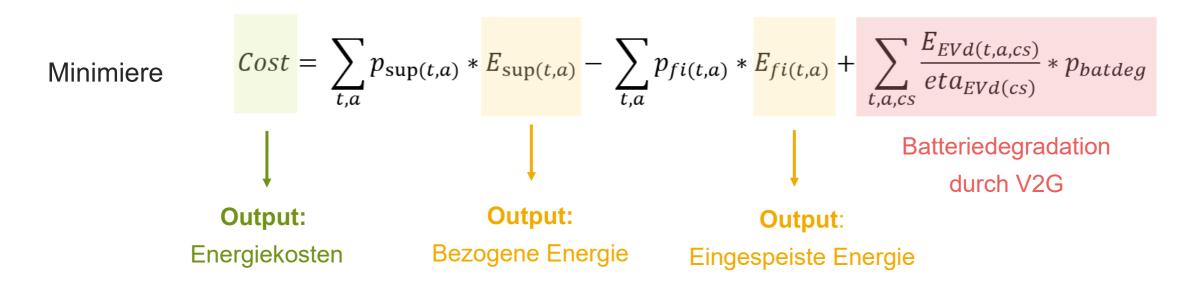
Elektronische Fahrtenbücher

- Beginn/Ende einer Fahrt,Kilometerleistung
- Keine Information zu Ladevorgängen oder Aufenthaltsort


Aufzeichnungen der Ladestationen

- Ladezeiten
- Keine Fahrzeug ID

Probabilistische Simulation

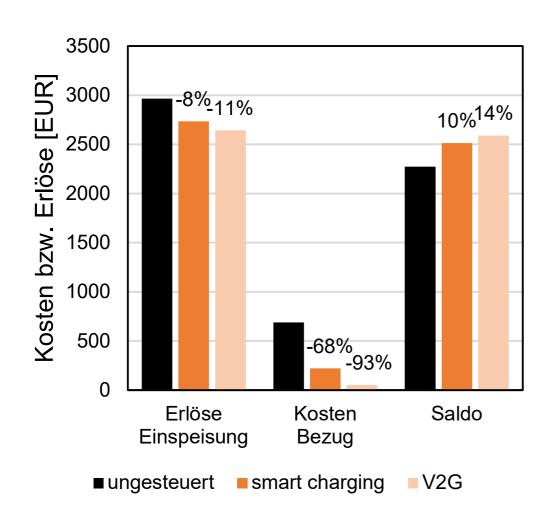

- Ladezeiten von Ladestation
- Kilometerleistungen mittelsVerteilungsfunktionen festgelegt
- Verteilungsfunktion je Monat und Tageszeit auf Basis der Fahrtenbücher

Verteilungsfunktion zur probabilistischen Bestimmung der Kilometerleitung je ankommender Fahrt für den Monat November im Zeitraum 09:00 – 17:00 Uhr

Optimierung

- Wesentliche Nebenbedingungen:
 - Bilanzgleichung (geladene Energiemenge entspricht bezogener Energiemenge)
 - Batteriegleichung (wenn Fahrzeug an Ladestation angesteckt)

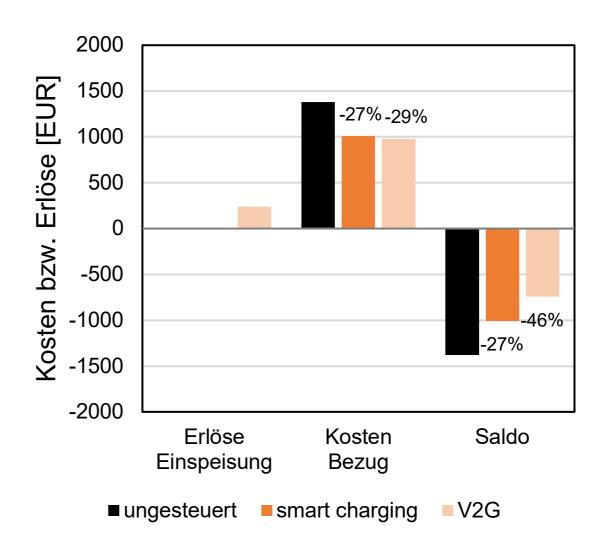
Ergebnisse


Fallstudie Windkraft Simonsfeld

Eigenverbrauchsoptierung

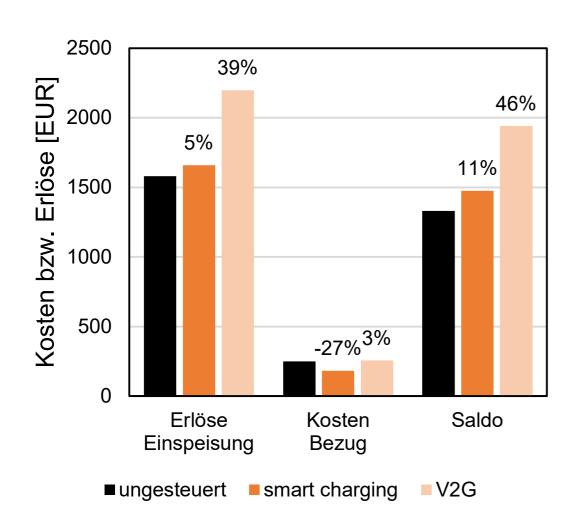
statische Preise, PV, keine Degradationskosten, Winter

- Monetärer Nutzen steigt um ...
 - 10% bei smart charging
 - 14%bei V2G


Dynamische Preisoptimierung

dynamische Preise, keine PV, keine Degradationskosten, Winter

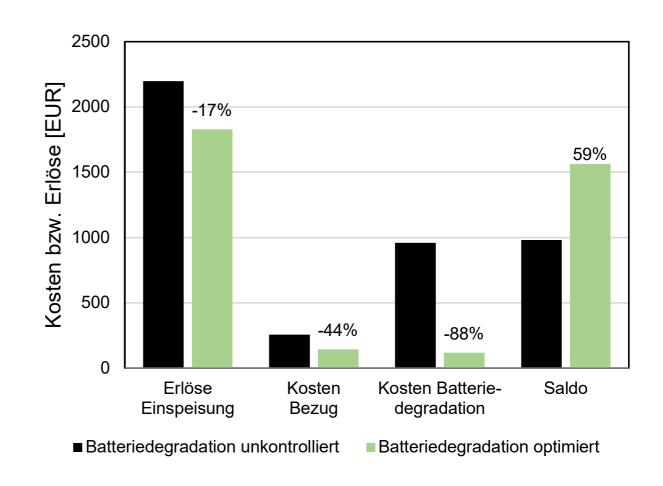
- Bezugskosten sinken durch
 Lastverschiebung bei smart charging
- Einspeiseerlöse nur durch
 Arbitragehandel mittels V2G
- Monetärer Nutzen steigt um ...


27% bei smart charging 46% bei V2G

Eigenverbrauchs- und dynamische Preisoptimierung

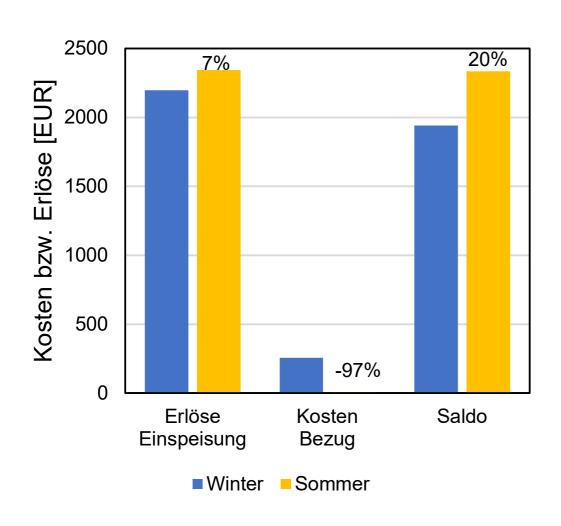
dynamische Preise, PV, keine Degradationskosten, Winter

- Strombezugskosten bei smart charging geringer als bei V2G (mehr Bezug durch Arbitragehandel)
- Einspeiseerlöse steigen bei V2G
- Monetärer Nutzen steigt um ...
 - 11% bei smart charging



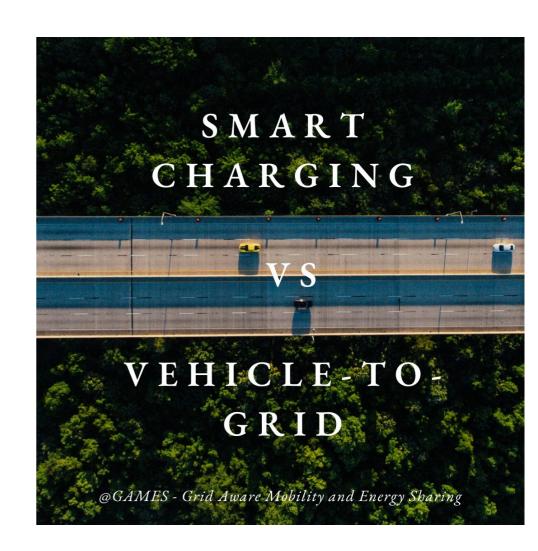
Batteriedegradation

dynamische Preisoptimierung, PV, V2G, Degradationskosten, Winter


- Durch Berücksichtigung in der Optimierung können
 Degradationskosten von ca. 1000 EUR auf ca. 100 EUR reduziert werden (88%)
- V2G bei Berücksichtigung der Degradationskosten weniger profitabel

Sommer vs. Winter

dynamische Preisoptimierung, PV, V2G, Degradationskosten



 Nutzen von Eigenverbrauchsoptimierung im Sommer höher

Schlussfolgerung

ENERGY INNOVATION ENGINEERING

- V2G bringt immer einen Mehrwert aber fällt in einigen Szenarien geringer aus als der Nutzen durch smart charging
- ABER höhere technischer Aufwand durch V2G
- Lange Standzeiten erhöhen Potential
- PV-Eigenverbrauchsoptimierung
 - überwiegt der Nutzen von smart charging
- Optimierung bei dynamischen Strompreisen
 - Zusätzliche Arbitrageerlöse durch V2G
- Eigenverbrauchsoptimierung + dynamischer Preise
 - Nutzen von V2G größer als durch smart charging
- Batteriedegradation bei V2G berücksichtigen!

Kontakt

DI Guntram Preßmair

guntram.pressmair@e-sieben.at www.e-sieben.at

e7 energy innovation & engineering

e7 energy innovation & engineering

Ingenieurbüro für Energie- und Umwelttechnik

Walcherstrasse 11/43, A-1020 Wien

Tel.: +43 1 907 80 26

www.e-sieben.at

