

Technological, Economic and Ecological Assessment of Powertrain Technologies in the Railway Sector

FLAT

18. Symposium Energieinnovation 2024

Graz, 14 – 16 February 2024

Bundesministerium Arbeit und Wirtschaft Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Competence Centers for Excellent Technologies

obe

österreic

32

Hycente

Standortagentur

Motivation

Emissions and Rail Network in the EU 3.2 Gt 29% by transport 0.4% by railways \rightarrow one of the most environmentally friendly forms of mobility

Benchmark **Decarbonizing the Railway Sector**

Alternatives

Electrification of Regional Railways

substantial costs and resources

→ other zero-emission technologies as suitable alternatives

case-by-case decision analysis

References: eea, statista

Scientific, Technology-neutral and Holistic Comparison

References: ÖNORM EN ISO 14040, ÖNORM EN ISO 14044, ÖNORM M 7140

 \rightarrow realistic operation according to the boundary conditions and vehicle specifications

 \rightarrow focus only on pre-use and use-phase as data for post-use phase misses consistency

 \rightarrow no consolidation as each stakeholder would weigh these four aspects individually

Boundary Conditions

Mühlkreisbahn in Austria

- Avg. Temperature: 10 °C
- **Track Distance:** 58 km
- Height Difference: 358 m
- ✓ Max. Inclination: 5.0 %
 - Driving Time: 75 min
- Cycle Interval: 45 min
 - **Cycles per Day:** 18
- **Mileage per Year:** 378,000 km
- Emissions per Year: 2.200 t

References: meinbezirk

Specifications

DMD	Fueling Station Diesel Mech. Gene- Tank Drive rator	 Vehicle Fleet Size: 4 Diesel Engine: 1400 kW Efficiency: 30 – 40% 	 Infrastructure Fueling Station: 100 L/min Efficiency: 85 – 90%
EMU	Catenary Line Trans- Elec. former Drive	 Vehicle Fleet Size: 4 Electric Machine: 1400 kW Efficiency: 80 – 90% 	 Infrastructure Catenary Line: 86 km Transformer Station: 8 MVA Efficiency: 94 – 96%
BEMU	Charging Station Battery Elec. Drive	 Vehicle Fleet Size: 5 Battery: 1800 kWh Electric Machine: 1400 kW Efficiency: 72 – 81% 	 Infrastructure Charging Station: 2.4 MW Transformer Station: 4 MVA Efficiency: 88 – 93%
HEMU	Fueling Station Hydrogen Fuel Cell Elec. Tank Battery Drive	 Vehicle Fleet Size: 4 Fuel Cell: 500 kW Battery: 420 kWh Efficiency: 40 - 50% 	 Infrastructure Fueling Station: 100 kg/h Electrolysis: 2 MW Efficiency: 72 – 81%

Energy Consumption

C) 2	2	4 6	6 6	3 1	0
DMU						
EMU						
BEMU						
HEMU						

Energy Consumption in GWh

- **Scenario:** Results of pessimistic, baseline and optimistic scenarios
- Energy: Focus only on renewable energies in terms of operation
- DMU: Fossil diesel produced centralized via refining of petroleum
- **EMU + BEMU:** Renewable electricity supplied from renewable power plant
- **HEMU:** Renewable hydrogen produced decentralized via electrolysis using renewable electricity

Vehicle Infrastructure

DMU = Diesel Multiple Unit // EMU = Electric Multiple Unit // BEMU = Battery Electric Multiple Unit // HEMU = Hydrogen Electric Multiple Unit

12

Emissions and Costs

DMU = Diesel Multiple Unit // EMU = Electric Multiple Unit // BEMU = Battery Electric Multiple Unit // HEMU = Hydrogen Electric Multiple Unit

Technology Comparison

Ecological

Summary: In this scenario the HEMU has an advantage over the BEMU and EMU

DMU = Diesel Multiple Unit // EMU = Electric Multiple Unit // BEMU = Battery Electric Multiple Unit // HEMU = Hydrogen Electric Multiple Unit

Conclusion

Transition to Renewable Technologies

Future powertrains are based on electric machines

Classic electric railcars remain the best option for most areas of application

Battery / Hydrogen electric railcars are suitable alternatives for regional railway Benchmark

Decarbonizing the Railway Sector

Alternatives

Commitment to Sustainable Technologies

Suitability depends on the respective boundary conditions

Technology-neutral comparison is a basis for profound decision-making

Renewable electricity or hydrogen is a prerequisite for all the alternatives

Contact

Maximilian Weber

HyCentA Research GmbH Inffeldgasse 15

A-8010 Graz

weber@hycenta.at

www.hycenta.at

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Bundesministerium Arbeit und Wirtschaft

Stadt Wien Upper Austrian Research GmbH Das Land FFG SFG Forschung wirkt Steiermark NEUES DENKÉN. NEUÉS FÖRDERN. wirtschafts agentur wien LAND österreicl TIROL **Competence Centers for Excellent Technologies**