Innovative Seasonal Energy Storage with Iron Oxides

Magdalena PAURITSCH, Michael LAMMER, Claudia PRÖLL, Fabio BLASCHKE, Viktor HACKER Institute of Chemical Engineering & Environmental Technology (CEET) Graz University of Technology, Austria 14.02.2024

TU Graz

SCIENCE

PASSION

TECHNOLOGY

² Outline

CEET

- Challenges in Hydrogen Storage and Transport
- Novel Concept: HyLoop
- Competitors
- Proof of Concept
- Characterisation and Investigation
- Conclusion

Energy Transport: Iron Oxide - a Novel Energy Carrier

Investigation of energy carriers for interregional and intercontinental transport of renewable energy

Transport via metal oxides represents a **very cost-effective** and novel approach to transporting the **chemical bond energy** of hydrogen within the iron oxide.

Energy Transport: Iron Oxide - a Novel Energy Carrier

Investigation of energy carriers for interregional and intercontinental transport of renewable energy

Transport via metal oxides represents a **very cost-effective** and novel approach to transporting the **chemical bond energy** of hydrogen within the iron oxide.

Concept of Iron Oxide as Energy Carrier: HyLoop

Reduction of Iron Oxide for H₂ storage: $Fe_3O_4 + 4 H_2/CO \rightarrow 3 Fe + 4 H_2O/CO_2$ $\Delta H_{R,1073} = 0.33 \text{ kWh/kg}_{Fe}$

Oxidation of Iron for H_2 release: 3 Fe + 4 $H_2O \rightarrow Fe_3O_4 + 4 H_2$

Reduction and oxidation typically at 400 - 800°C Theoretical maximum energy storage density: **1.9 kWh_{H2}/kg_{Fe}**

- Storage material: regional Austrian iron ore
- Storage density: 3.1 wt%
- Specific material costs: 3000-6000 \$/t_{H2}
 (compare: LOHC 20 000 \$/t_{H2})
- Hydrogen release capacity:
 1.71 MWh_{H2}/m³
- Heat release capacity: 1.8 MWh_{H2}/m³

Bock S, Pauritsch M, Lux S, Hacker V., Energy Convers Manag 2022; doi.org/10.1016/j.enconman.2022.115834

CEET

8

Universities/ Research Organisations

Universität Duisburg-Essen & TU Clausthal Forschungszentrum Jülich ETH Zürich

> Conclusions and Outlook: "These properties could well make this process a suitable option for large-scale hydrogen storage over long time periods."

ICEET Proof of Concept: 10 kW Reactor

- 10 kW equals $\approx 0.25 \text{ kg}_{\text{H2}}/\text{h}$ •
- ≈ 15 kg OC-material •

9

- Reactor height: 1.8 m
- Reactor diameter: 0.12 m •

HyLoop Advantages

Testing under real Gas Condition - Biogas: Cleaning and Production of Hydrogen

- H₂S as an large impact on chemical looping hydrogen production
- Cleaning Effect of synthesis gas

CEET

11

- High purity Hydrogen production
- Suitable for decentralized use

B. Stoppacher, S. Bock, K. Malli, M. Lammer, and V. Hacker, Fuel, vol. 307, no. August 2021, 2022, 10.1016/j.fuel.2021.121677.

G∃≢ 13

Comparison of Hydrogen Storage Technologies

l		Pressurised hydrogen	Liquefied hydrogen	Metal hydrides	Ammonia	Liquid organic hydrogen carriers	HyLoop
	Grav. storage density	~	~	~	×	×	\checkmark
	Vol. storage density	~	\checkmark	~	\checkmark	~	\checkmark
	Efficiency	~	×	~	×	×	\checkmark
	Scalability	~	×	×	×	×	\checkmark
	Safety	×	×	~	~	~	\checkmark
	Environmental aspects	\checkmark	~	×	×	×	\checkmark

CEEET Chemical Engineering and Environmental Technology

- Efficient and cost-effective storage and transport of hydrogen on a large scale is possible
- Contact masses based on iron for the production of high-purity hydrogen with a long service life have been successfully demonstrated in a 10 kW chemical looping pilot plant.
- Similar contact masses on the basis of iron, enable storage with an energy density of 1.9 kWh_{H2}/kg_{Fe} or 1.5 kWh_{H2}/kg for 20wt% inert material.
- System development and simulation will be the next step

Innovative Seasonal Energy Storage with Iron Oxides

<u>Magdalena PAURITSCH</u>, Michael LAMMER, Claudia PRÖLL, Fabio BLASCHKE, Viktor HACKER Institute of Chemical Engineering & Environmental Technology (CEET) Graz University of Technology, Austria 14.02.2024

Contact: <u>magdalena.pauritsch@tugraz.at</u>

