ANALYSING THE IMPACTS OF AN EXTERNAL POWER SUPPLIER IN A RENEWABLE ENERGY COMMUNITY

Gerald Feichtinger, Samuel Ringhofer, Wolfgang Posch

SCIENCE TO BUSINESS

16. Februar 2024

Motivation

Modelling approach

Dynamic allocation approach

Financial feasibility

Net Present Value

t Period (year)

Scenario constellation & assumptions

Techno-economical assumptions

Constellation of th	e REC under	consideration
----------------------------	-------------	---------------

¥							
Туре	Count	Profile ¹	Consumption (kWh/a)	Production (kWh/a)	Storage (kWh)		
Business	3	G1	18.000	-	-		
Prosumer	1	G2 E1	72.000	60.000	60		
Business	2	G4	30.000	-	-		
Prosumer	1	G5 E1	50.000	40.000	40		
Business	1	G5	50.000	-	-		
Household	22	H0	3.200	-	-		
Total	30	-	223.200	100.000	100		

Factors						
Discount rate (p.a.)	3,0%					
Inflation rate (p.a.)	3,0%					
Wear and tear for PV and storage (p.a.)	0,5%					
CAPEX						
PV (40 kWp), less subsidy	1.540 eur/kWp					
PV (60 kWp), less subsidy	1.367 eur/kWp					
Speicher, less subsidy	1.300 eur/kWp					
OPEX						
O&M (REC)	350 eur/a					
O&M (PV)	300 eur/a					
Ecological						
CO ₂ (grid)	202 g/kWh					
CO ₂ (PV)	14 g/kWh					
Prices and renumeration	S					
Feed-in tariff (grid)	9,63 ct/kWh					
Feed-in tariff (REC)	18,00 ct/kWh					
Electricity price (grid)	36,49 ct/kWh					
Electricity price (REC)	30,99 ct/kWh					

Consideration of an external power supplier (30.000 kWh)

Posch/Feichtinger

Results (I)

External power supplier having a fluctuating production E1

Posch/Feichtinger

Results (II)

External power supplier having a constant band production E0

Posch/Feichtinger

Results (III)

External power supplier switching from E1 to E0

Sensitivity

Selected key parameters with an external power supplier having E0

Posch/Feichtinger

25.01.2024

Source: own calculations

Discussion

- Discount rate plays a special role → positive correlation between the change in the uniform discount rate and the financial result of the REC untypical
- Inflation rate of particular importance → annual inflation adjustment increases the price difference between (higher) electricity prices and (lower) feed-in tariffs (renumeration)
- REC renumeration leads to a redistribution within the REC → a decrease of the renumeration is beneficial for consumers (while producers lose) and vice versa
- Potential model extension would be the integration of an external power storage unit to temporarily store a surplus in the production from members of the REC

Conclusion

- Simple modelling approach that offers a simple way of analyzing different constellations of REC in Austria based on the NPV method
- Potential effects are analyzed on three important levels: (i) the <u>financial</u> level, (ii) the <u>ecological</u> level, and (iii) a <u>social</u> level in a special form of self-sufficiency (the level of autarky)
- Model thus provides in advance helpful insights into the effects of various socio-economic parameters of REC
- Model still offers options for future expansions to better reflect special features of the electricity economy
- Integration of an external electricity producer into a local REC is beneficial: (i) positive financial effect, (ii) lower CO2 emissions, and (iii) a higher degree of autarky

Thx!

Mag. Dr. Gerald Feichtinger

Tel. Nr.: +43 (0) 3842 402 6012

Department Wirtschafts- und Betriebswissenschaften Peter Tunner Straße 25-27 A-8700 Leoben Mail: gerald.feichtinger@unileoben.ac.at Web: wbw.unileoben.ac.at