

Pricing Mechanism for Decentralized Coordination in Energy Communities

N. Frieß¹, U. Pferschy¹, J. Schauer² & A. Darmann¹

¹Institut für Operations und Information Systems

²Institut für Software Design und Security Energy Analytics & Solution Lab

18. Symposium Energieinnovation

2024-02-16

Motivation

Energy Communities (ECs) for **active participation** in the energy transition

Operation of ECs involves many decentralized decisions: a) power levels for charging and discharging stationary batteries b) power levels for charging (and discharging) electric vehicles c) starting times of energy-intensive loads

Goal: efficient local energy use → KPIs: local-suffiency, localsupply, ... applied by each individual member the full potential of ECs is not exhausted

Coordinated Decision-Making

Option 1: Central Optimization Model (ILP) →

Collective Objective: min. grid usage

Constraints: time windows, mobility Perparent of the second seco

Idea: monetary incentives to shift demand and storage decisions towards the system-wide optimum

$s_{i,t} + \overleftarrow{q}_{i,t}^{grid} + \sum_{\forall a} \overleftarrow{q}_{i,s,t}^{batt} + \sum_{\forall a} \overleftarrow{q}_{i,v,t}^{car} + \overleftarrow{q}_{i,t}^{com} =$	(2)
$d_{i,t} + \sum_{\forall s} \overrightarrow{q}_{i,s,t}^{batt} + \sum_{\forall v} \overrightarrow{q}_{i,v,t}^{car} + \overrightarrow{q}_{i,t}^{com} + \sum_{\forall j} \overrightarrow{q}_{i,j,t}^{fload} + \overrightarrow{q}_{i,t}^{lost} \qquad \forall (i,t)$	
$s_{com,t} + \sum_{\forall i} \overrightarrow{q}_{i,t}^{com} + \sum_{\forall s} \overleftarrow{q}_{com,s,t}^{batt} = \sum_{\forall i} \overleftarrow{q}_{i,t}^{com} + \sum_{\forall s} \overrightarrow{q}_{com,s,t}^{batt} + \overrightarrow{q}_{com,t}^{grid} \qquad \forall t$	(3)
$\overrightarrow{q}_{i,t}^{com} \leq \overline{q}_{i}^{out} \qquad orall \left(i,t ight)$	(4)
$\overrightarrow{q}_{i,t}^{com} \leq s_{i,t} + \sum \overleftarrow{q}_{i,s,t}^{batt} - d_{i,t} - \sum \overrightarrow{q}_{i,v,t}^{car} - \sum \overrightarrow{q}_{i,j,t}^{fload} \qquad \forall (i,t) s_{i,t} - d_{i,t} = \sum \overrightarrow{q}_{i,t}^{fload} = (i,t) s_{i,t} - d_{i,t} = (i,t$	≥ 0
$\forall s \qquad \forall v \qquad \forall j$	(5)
$\overrightarrow{q}_{i,t}^{com} \leq \sum_{orall s} \overleftarrow{q}_{i,s,t}^{batt} orall (i,t) s_{i,t} - d_{i,t} < 0$	
$\sum_{\forall s} \overleftarrow{q}_{i,s,t}^{batt} \leq d_{i,t} + \sum_{\forall v} \overrightarrow{q}_{i,v,t}^{car} + \sum_{\forall j} \overrightarrow{q}_{i,j,t}^{fload} \qquad \forall (i,t)$	(6)
$\overleftarrow{q}_{i,s,t}^{batt} \leq \overline{q}_{i,s}^{t-batt}, \ \overrightarrow{q}_{i,s,t}^{batt} \leq \overline{q}_{i,s}^{-batt} \qquad \forall \left(i^*,s,t\right)$	(7)
$SoC_{i,s,start_t}^{batt} = SoC_{i,s}^{batt} ~~ orall i^*$	(8)
$SoC_{i,s,t}^{batt} = \gamma_{i,s} * SoC_{i,s,t-1}^{batt} + \overrightarrow{\gamma_{i,s}} * \overrightarrow{q}_{i,s,t}^{batt} - \overleftarrow{\gamma_{i,s}} * \overleftarrow{q}_{i,s,t}^{batt} \forall (i^*, s, t)$	(9)
$SoC_{i,s,t}^{batt} \le \overline{SoC}_{i,s}^{batt} \qquad \forall (i^*, s, t)$ (((10)
$\overleftarrow{q}_{i,v,t}^{car} \le \overline{q}_{i,v}^{\leftarrow car} \ast a_{i,v,t}, \ \overrightarrow{q}_{i,v,t}^{car} \le \overline{q}_{i,v}^{\rightarrow car} \ast a_{i,v,t} \qquad \forall (i,v,t) $	(11)
$SoC_{i,v,start_{t}}^{car} = SoC_{i,v}^{car} \forall (i,v)$ ((12)
$SoC_{i,v,t}^{car} = \epsilon_{i,v} * SoC_{i,v,t-1}^{car} + \overrightarrow{\epsilon_{i,v}} * \overrightarrow{q}_{i,v,t}^{car} - \overleftarrow{\epsilon_{i,v}} * \overleftarrow{q}_{i,v,t}^{car} \qquad \forall (i,v,t) a_{i,v,t} = 1 \ (a_{i,v,t} + \overrightarrow{q}_{i,v,t}) = (a_{i,v,t} $	(13)
$SoC_{i,v,t}^{car} \ge \underline{SoC}_{i,v,t}^{car} * a_{i,v,t} \qquad \forall (i,v,t) t \ge t' \tag{(4)}$	(14)
$SoC_{i,v,t}^{car} \le \overline{SoC}_{i,v}^{car} \qquad \forall (i,v,t)$ ((15)
$SoC_{i,v,dep-1}^{car} \ge \underline{SoC}_{i,v}^{car} + v_{i,v} \qquad \forall (i,v,trips)$ ((16)
$SoC_{i,v,arr-1}^{car} = SoC_{i,v,dep-1}^{car} - v_{i,v} \qquad \forall (i,v,trips) $	(17)
$\overrightarrow{q}_{i,j,t}^{fload} = \sum_{k} x_{i,j,k}^{fload} * schedule_{i,j,k,t} \qquad \forall (i,j,t) $	(18)
$\sum_{\forall k} x_{i,j,k}^{fload} = 1 \qquad \forall (i,j) \tag{(}$	(19)
$x_{i,j,k}^{fload} = 1 \qquad orall \left(i,j,k ight) task_j^{start} \leq start_l \qquad ($	(20)

Legal Framework

Electricity Quantities

Electricity Prices

External:

remaining demand covered by individual electricity supplier

Internal:

reduced grid fees + exemption of green electricity support payments exchange of electricity at **self-defined prices**

Pricing Mechanism

Idea: set purchasing prices based on **forecasted electricity** balance

Requirements on EC Tariff Models

Guidelines for EC pricing policies¹

Suggestions for Tariff Models based on dynamic prices:

Reliability

- agree on parameters for price determination once and stick to them for a defined period (e.g. a year)
- price calculation in 15-minuteresolution based on forecasts, updated once per day for stable day-ahead prices

Participation

selling price = f(x) purchasing price = f(x) (+ markup)

- orientation on levelized cost of energy for min. selling price
- ø purchasing price ≤ purchasing price electricity provider

Requirements on EC Tariff Models

Community Bill (selling price = purchasing price)

Profits* if external feed-in price > ø community selling price, else
losses

*EC profits could be used ...

- to cover administrative cost (instead of a flat rate)
- to offer special rates for vulnerable groups
- for savings for collective community investments.

EC with 10 members*: week 1 in Q2 2023

	System-wide Optimum	Constant Tariff Model	Dynamic Tariff Model
Optimization Level	Community	Individual	Individual
Objective			
	$\min \sum_{\forall i,t} \overleftarrow{q}_{i,t}^{grid} + \sum_{\forall t} \overrightarrow{q}_{com,t}^{grid}$	$\min \sum_{\forall t} \overrightarrow{q}_{i,t}^{com} * \overrightarrow{p}_t^{com} -$	_
		$\sum_{\forall t} \overleftarrow{q}_{i,t}^{com} \ast \overleftarrow{p}_{t}^{com} -$	-
		$\sum_{\forall t} \overleftarrow{q}_{i,t}^{grid} * \overleftarrow{p}_{t}^{grid}$	$\forall i \in \mathbf{Members}$

*2 residential prosumers + 2 commercial prosumers with PV (34 kWp in total), 6 pure residential consumers, 1x 10 kWh battery, 1x 50 kWh electric vehicle (bi-directional charging), 3 flexible loads (1.2, 2.5 and 10 max. kW)

Forecasts vs. Reality

→ optimization embedded in a larger simulation framework (MPC-inspired)

MILP: decisions for next time step *t* based on outlook for {*t*,...,*t*+95} 15 min. 1 day SIMULATION MODEL **OPTIMIZATION MODEL** repeat: Input Simulation: forecast Output = {t,...,t+95} = {t,...,t+95} -Optimization Output Input t += 1 Simulation: reality

move time horizon from {*t,...,t*+95} *to* {*t*+1*,...,t*+96}

report targets for t

Price Settings

Parameters	Values
max. forecasted overproduction	7.7 kWh/timestep
max. forecasted underproduction	-2.5 kWh/timestep
max. community electricity price	40 ct/kWh
min. community electricity price	-5 ct/kWh
reference electricity price	30 ct/kWh
slope parameter	4
grid fees + taxes and duties	5.4 ct/kWh
external total electricity price	35 ct/kWh

40 logarithmic pricing function electricity price [ct/kWh] constant pricing function 30 20 10 0 -2.5 7.7 0 electricity imbalance [kWh]

Preliminary Results

Flattened electricity imbalance (from forecast to realization) through dynamic prices on one representative day:

Preliminary Results

Test Instances

evaluation of ... a longer time horizon (year) a wider set of performance indicators (financial outcome) different community configurations

Other Decentralized Coordination Mechanisms

reinforcement learning for automated decision-making at individual member nodes with joint reward function

Sector Coupling integration of air & water heating to increase flexible loads

Questions

Nathalie Frieß nathalie.friess@uni-graz.at

Ulrich Pferschy ulrich.pferschy@uni-graz.at Joachim Schauer joachim.schauer@fh-joanneum.at Andreas Darmann andreas.darmann@uni-graz.at

