



#### HOWAFLEX2MARKET – FLEXIBILITÄT DURCH ELEKTRISCHE WARMWASSERHÄNGESPEICHER

18. SYMPOSIUM ENERGIEINNOVATION 2024

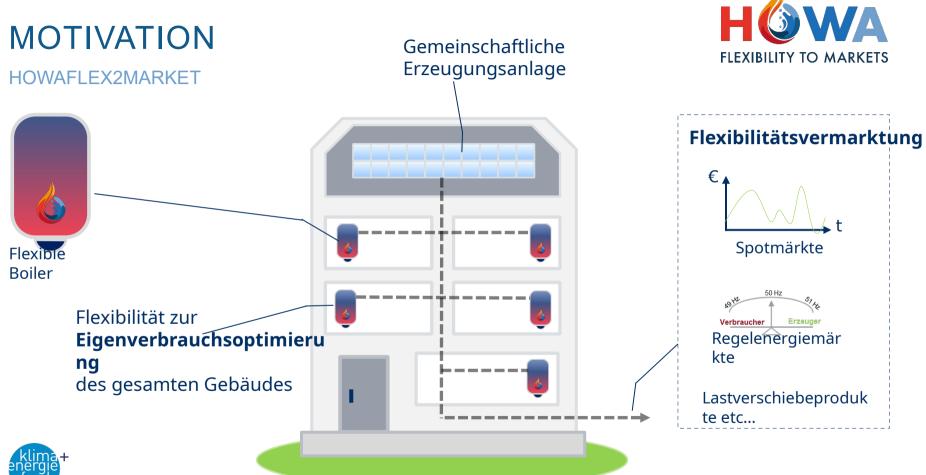
Regina Hemm, Carlo Corinaldesi, Lisa Diamond, Tarek Ayoub, Frank Stocker



### HOT WATER FLEXIBILITY TO MARKETS



#### **HOWAFLEX2MARKET**


- **Projektlaufzeit:** 3 Jahre (1.10.2023 30.09.2026)
- Förderung: Energieforschung Ausschreibung 2022 und KPC
- <u>Projektinhalt:</u> Test verschiedener Ladestrategien anhand von mindestens 1000 smarten Boilern im Feld. Die Ladestrategien werden unter der Berücksichtigung von Fairnessaspekten und Eigenverbrauchsoptimierung bzw. Marktteilnahme entwickelt
- <u>Ziel:</u> Durch Teilnahme eines Aggregators/IT-Service Dienstleisters und einem Boilerhersteller soll die Last-Mile zu einem marktreifen Produkt überwunden werden.











### **AUF EINEN BLICK**



#### **HOWAFLEX2MARKET**

- Entwicklung robuster und zuverlässiger Regelstrategien, für
  - Eigenverbrauchsoptimierung, Regelenergie und Load Shifting
- 2. Berücksichtigung von Fairnessaspekten



Large-Scale
Demonstration

- 1. Installation von 1000 smarten Boilern im Feld
  - 2. Test der Ladestrategien
    - BegleitendeEndkund:innenbefragung

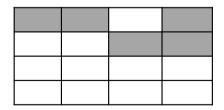


**Digitaler Zwilling** 

- 1. Entwicklung, Simulation und **Evaluation** der verschiedenen Ladestrategien
- 2. Toolset zur Evaluierung der Wirtschaftlichkeit verschiedener Gebäude Setups






### VERSCHIEDENE SETUPS



#### VERSCHIEDENE ANWENDUNGSFÄLLE FÜR PV-SMART-METER KOMBINATIONEN

|                      | PV: Ja<br>Smart Meter*: Nein | PV: Ja<br>Smart Meter*: Ja | PV: Nein<br>Smart Meter*: Nein | PV: Nein<br>Smart Meter*: Ja |
|----------------------|------------------------------|----------------------------|--------------------------------|------------------------------|
| Rein Komfortbasiert  | -                            | -                          |                                | -                            |
| Eigenverbrauch max.  |                              |                            | -                              | -                            |
| Spitzenlastreduktion |                              |                            |                                |                              |
| Regelenergie         |                              |                            |                                |                              |

\*<u>Live-Informationen:</u> Manche Wechselrichter Live Smart-Meter-Messwerte am Netzanschlusspunkt auslesen





### **ENTWICKLUNG LADESTRATEGIEN**



#### DREI HAUPTASPEKTE

1

Tagesplanung von Gesamtlademengen, Lade- und Nichtladefenstern über den Tag 1a. Aus Markt- und Netzsicht 1b. Aus Kund:innensicht



2

Echtzeitsteuerung des einzelnen Boilers



3

Faire Verteilung des Regelenergieabrufes bzw. PV-Überschusses in einem Mehrparteienhaus



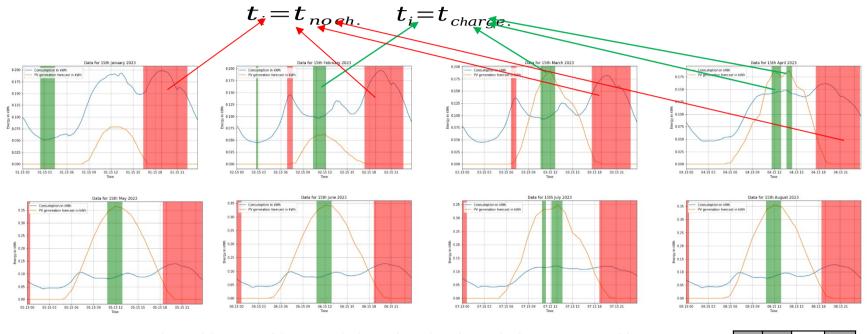
## **1A TAGESPLANUNG**



AUS MARKT- UND/ODER NETZSICHT

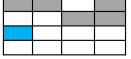
#### Mögliche Ziele:

- Spitzenlastreduktion
- Eigenverbrauchsoptimierung im Rahmen von Mieterstromanlage
- Zusätzliche Fenster für Regelenergieangebote oder andere Lastverschiebeprodukte
- CO<sub>2</sub> Reduktion


#### <u>Planungsaspekte:</u>

- Zu welchen Zeiten lade ich die Boiler → Zeiten definieren
- Zeitpunkte für Regelenergie oder zu Zeiten mit Bezugsspitzen:
- klima+ energie fonds
- → Zeiten definieren
- → Genügend freie Speicherkapazität sicherstellen

#### **1A TAGESPLANUNG**




#### BSP.: SPITZENLASTREDUKTION OHNE SMART METER DATEN MIT PV





→ Anhand h0-Profilen und den durchschnittlichen PV-Profilen Österreichs definiert, wann die Differenz zwischen verbrauchter Energie und erzeugter PV-Energie am höchsten ist



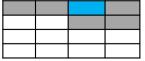
## **1B TAGESPLANUNG**



#### AUS (KUND: INNEN/)KOMFORTPERSPEKTIVE

|          | Wann                                                               | Wie lange                                              |                 |
|----------|--------------------------------------------------------------------|--------------------------------------------------------|-----------------|
| Economy  | 1x pro 24h (Nacht)                                                 | Bis Speicher voll ist                                  | Baseline<br>Min |
| Economy+ | 2x pro 24h (Nacht, Nachmittag)                                     | Bis Speicher voll ist                                  | Baseline        |
| Komfort  | X h vor historischen rollierenden<br>Durchschnittsverbrauchsmaxima | Bis Ende des definierten<br>Ladefensters               |                 |
| Komfort+ | Wie bei Komfort<br>& wenn Temperatur unter<br>Mindesttemperatur    | Wie bei Komfort<br>& bis Mindesttemperatur<br>erreicht |                 |
| Luxus    | Wenn Temperatur kleiner als<br>Maximaltemperatur ist               | Bis Speicher voll ist                                  | Baseline<br>Max |




## **1B TAGESPLANUNG**



#### BSP.: LADEFENSTER VOR ZEITEN MIT DURCHSCHNITTLICH SEHR HOHEM VERBRAUCH







#### **1B TAGESPLANUNG**



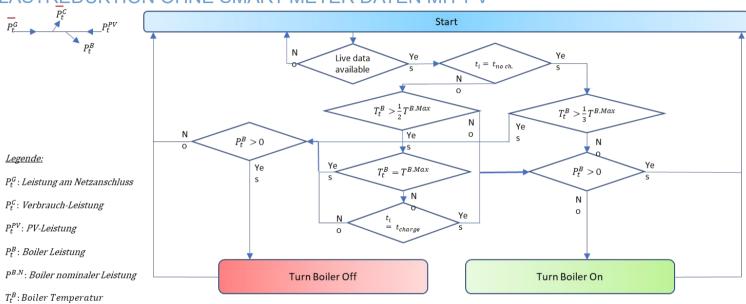
#### AUS (KUND:INNEN/)KOMFORTPERSPEKTIVE

|          | Wann                                                            | Wie lange                                           |              |
|----------|-----------------------------------------------------------------|-----------------------------------------------------|--------------|
| Economy  | 1x pro 24h (Nacht)                                              | Bis Speicher voll ist                               | Baseline Min |
| Economy+ | 2x pro 24h (Nacht, Nachmittag)                                  | Bis Speicher voll ist                               | Baseline     |
| Komfort  | X h vor historischen rollierenden Durchschnittsverbrauchsmaxima | Bis Ende des definierten Ladefensters               |              |
| Komfort+ | Wie bei Komfort<br>& wenn Temperatur unter Mindesttemperatur    | Wie bei Komfort<br>& bis Mindesttemperatur erreicht |              |
| Luxus    | Wenn Temperatur kleiner als Maximaltemperatur ist               | Bis Speicher voll ist                               | Baseline Max |

→ Mit Markt-/Netzbezogenen Ladestrategien kombinieren

#### Mögliche Kund:innenwünsche:

- Wieviel Gesamtmenge soll pro Tag geladen werden? (→ Energiesparaspekte)
- Auf wieviele Ladefenster soll es aufgeteilt werden? (→ Verfügbarkeit, Verluste)
- Zusätzlicher Komfort (→ Minimaltemperatur)
- Kostenkontrolle
- Trotzdem übersichtlich halten → Wie wird der Boiler eingesetzt




#### 2 ECHTZEITSTEUERUNG





#### SPITZENLASTREDUKTION OHNE SMART METER DATEN MIT PV



 $T^{B,Max}$ : Boiler maximaler Temperatur



#### Annahmen:

- 1. Wenn der Boiler unter 1/3 gefüllt ist und  $t_i = t_{noch}$ , dann wird der Boiler unflexibel geladen.
- 2. Wenn der Boiler unter ½ gefüllt ist und  $t_i \neq t_{noch}$ , dann wird er unflexibel geladen.
- 3. Wenn der Boiler über ½ gefüllt ist und  $t_i = t_{charge}$ , wird der Boiler geladen.

### 3 FAIRE VERTEILUNG



#### **MÖGLICHKEITEN**

- 1. Absolut gleich
- 2. Prozentual gleich (auf Nennleistung bezogen)
- 3. Prozent gleich (SOC)
- 4. Zuerst die Ungeladenen und progressiv alle mitnehmen (SOC)
- 5. Prozent auf Basis des Verbrauchs am Vortag
- 6. Prozent auf Basis des Verbrauchs in den nächsten 24h
- 7. Zufallsprinzip
- 8. Optimierung



#### 3 FAIRE VERTEILUNG



#### **MÖGLICHKEITEN**

- 1. Absolut gleich
- Prozentual gleich (auf Nennleistung bezogen)
- Prozent gleich (SOC)
- 4. Zuerst die Ungeladenen und progressiv alle mitnehmen (SOC)
- 5. Prozent auf Basis des Verbrauchs am Vortag
- 6. Prozent auf Basis des Verbrauchs in den nächsten 24h
- 7. Zufallsprinzip
- 8. Optimierung

- → Fairness bezogen auf die Boiler muss nicht fair sein bezogen auf den Gesamthaushaltsverbrauch
- → Fairness hängt auch von Aufteilungsschlüssel im Rahmen des Mieterstrommodells ab





STEP 0













STEP 1













STEP 2













STEP 3













STEP 4













STEP 5













STEP 0













STEP 1













STEP 2













STEP 3













STEP 4











#### 3 FAIRE VERTEILUNG



#### DES REGELENERGIE-ABRUFES BZW. PV-ÜBERSCHUSSES IN EINEM MEHRPARTEIENHAUS

Geeignet für On-Off-Boiler

Nur geeignet für modulierende Boiler

Nach Speicherstand Zufällige Auswahl der Boiler

Optimierung

Gleichmäßig bezogen auf Anzahl der Boiler Anteilsmäßig, bezogen auf nominelle Leistung der Boiler

Anteilsmäßig, bezogen auf aktuellen Speicherstand Prozent auf Basis des Verbrauchs am Vortag

Prozent auf Basis des Verbrauchs in den nächsten 24h

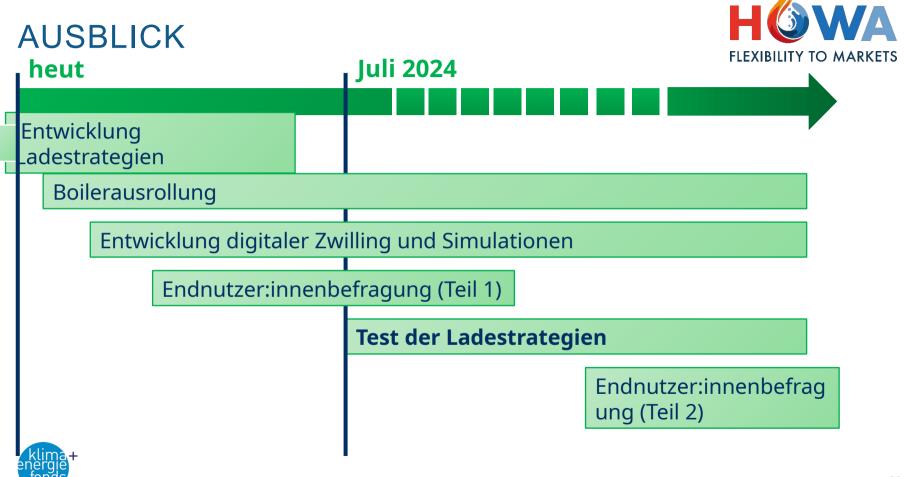
Damit auch für On-Off-Boiler geeignet, könnte man auch durchwechseln

Innerhalb einer Viertelstunde bekommt jeder Boiler die gleiche Ladezeit, bei 15 Boilern bekommt z.B. jeder Boiler eine Minute

Zufallsprinzip

Festgelegte Reihenfolge




### **ENDNUTZER:INNENBEFRAGUNG**



- <u>Ziele:</u> Vertiefende Einblicke in Teilnahmemotivationen, Fairnesswahrnehmung und Teilnahmeerleben von Endnutzer:innen unter Berücksichtigung demografischer Merkmale
- <u>1. Befragung Feldstudienbeginn</u>: Teilnahmemotivation, Fairnessverständnis nach unterschiedlichen Ladestrategien und Tarifen, Erwartungen (z.B. Einsparungen, Informationserhalt), etc.
- 2. Befragung Feldstudienende: Feedback und Vergleiche: Erwartungserfüllung, erlebte Fairness, Teilnahmeerleben individuell, Haushaltsebene,

Gemeinschaftsebene, etc.

**gebnis**: Nutzer:innengruppenspezifische Empfehlungen zur Akzeptanzförderung





#### VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Regina Hemm, Carlo Corinaldesi, Lisa Diamond, Tarek Ayoub, Frank Stocker

#### Kontakt:

Regina Hemm regina.hemm@ait.ac.at +43 664 88335515







