

Systematisches Vorgehen zur Analyse eines "Technologischen Innovationssystems (TIS)" im Feld Wasserstoff am Beispiel der Südafrikanisch-Deutschen Energiepartnerschaft

Lukas Kasper & Eva Hauser (IZES gGmbH)

EnInnov 2024 | 14.-16. Februar 2024 TU Graz, Österreich

Deutschland kann auf Grund zu geringer Kapazitäten Wasserstoff nicht in ausreichenden Mengen produzieren

0

0

0

Angewiesen auf Importe aus dem Ausland mit Blick auf den globalen Süden Südafrika verfügt über optimale Bedingungen zur grünen Stromproduktion und stellt sich als geeigneter H₂-Produktionskern dar

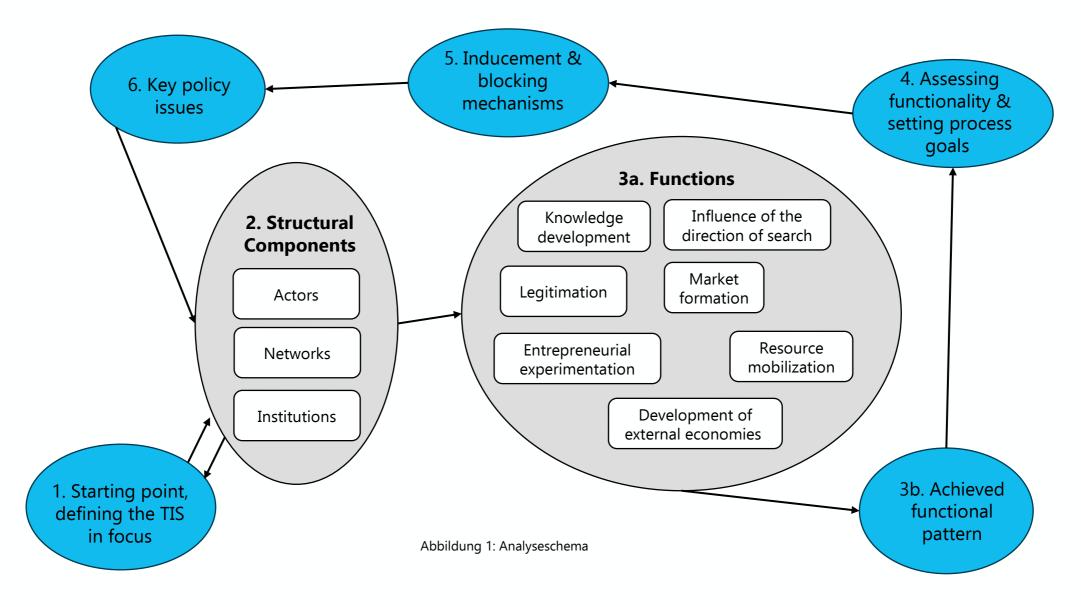
> Durch die bestehende Energiepartnerschaft soll die Wasserstoffwirtschaft und damit das H₂-Upscaling im Rahmen des Innovationssystems gefördert werden

Einführung in "Technologische Innovationssysteme (TIS)"

B. Carlsson und R. Stankiewicz (1991)

- Wirtschaftliches Wachstum eines Landes spiegelt das Entwicklungspotenzial als Funktion der TIS wider
- Geschäftsmöglichkeiten, Ressourcen und institutionelle Infrastruktur Bestandteil der TIS
- Fokus auf Quellen des wirtschaftlichen Wandels in Verbindung mit organisatorischen und institutionellen Faktoren
- TIS bestehen aus Wissens- und Kompetenznetzen und dienen dem Zweck einer übergreifenden Anwendung einer spezifischen Technologie

A. Bergek, S. Jacobsson, B. Carlsson, S. Lindmark und A. Rickne (2008)


- Weiterführung zur Analyse von TIS sowie Innovationsdynamiken
- Analyseschema zur Identifikation von Schlüsselfragen und Erstellung konkreter Ziele in der Politik
- TIS enthalten all diejenigen Elemente, die den Innovationsprozess der Technologie beeinflussen
- Ein räumlich begrenztes TIS kann ohne Betrachtung seiner globalen Einbettung weder verstanden, noch bewertet werden

M.P. Hekkert, S.O. Negro, G. Heimeriks und R. Harmsen (2011)

- Nachschlagewerk mit Anleitungen und Erläuterungen für die Analyse von TIS zu Entscheidungsprozessen
- Primärfunktion deckungsgleich zu Hekkert et al.
- Festlegung von fünf (Entwicklungs-) Phasen zur Bewertung des Innovationssystems:

Pre-Development, Development, Take-Off, Acceleration, Stabilization

Einführung in "Technologische Innovationssysteme (TIS)"

Analyseeinheit und Systemgrenze

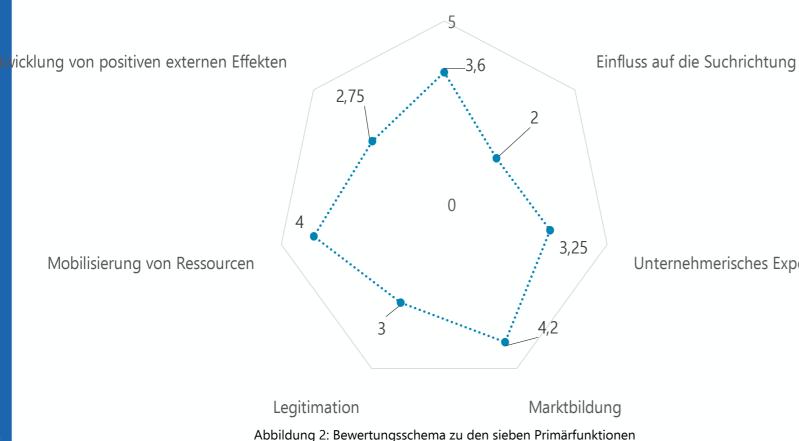
Fokus auf das Produkt Wasserstoff, mit gleichzeitiger Vertiefung auf die Produktion von grünem H₂ und auf das Hoheitsgebiet Südafrikas als räumliche Systemgrenze

Globaler Charakter des TIS bleibt bestehen, sodass externe Einflüsse einwirken können

Wasserstoff-Branche steht in ihrer Genese, womit ein stetiger und übergreifender Wissenstransfer sowie die Weiterentwicklung der Technologie einhergeht

Südafrika zeichnet sich durch seine Strukturen und Gegebenheiten als strategisch wichtiger Partner für die H₂-Produktion und -Vermarktung aus

Blick auf die strukturellen und systemischen Verhältnisse Südafrikas

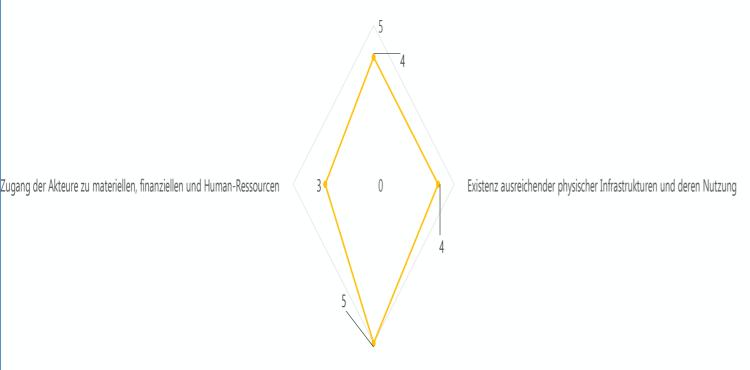

Strukturelle Komponenten im TIS

	Akteure	Netzwerke/Beteiligungen
	Bergbauunternehmen	National
	Energieunternehmen	National und international
Privat	Technologieunternehmen	National
Filvat	Projektierungsunternehmen	National und international
	Forschungseinrichtungen	National und international
	Abnehmersektoren	National
	Staatskonzerne	National
Staatlich-	Regulierungsbehörden	Internationale Partnerschaften
öffentlich	Akademische und wissen- schaftliche Einrichtungen	Nationale und internationale Kooperationen
	Scharthene Emmeritarigen	Rooperationen
Zivil-	Nichtregierungsorganisa-	National
gesellschaftlich	tionen mit unterschiedlichen Schwerpunkten	National

Anglo American	Sasol	Engie	
Impala Platinum	Arcelor Mittal	Hydrox Holdings	
Linde Engineering	HyPlat	Bambili Energy	
Eskom	Investment and Infrastructure Office	HySA	
Department of Mineral Resources and Energy	Council of Scientific and Industrial Research	Department of Science and Innovation	
Petroleum, Oil and Gas Corporation	SA National Energy Development Institute	Institute for Economic Justice	

Tabelle 1: Kategorisierung der strukturellen Komponenten

Systemfunktionalität anhand des funktionellen Musters und der Systemgüte



Wissensentwicklung und -verbreitung

- Bewertung anhand ausgewählter Indikatoren für jede Hauptfunktion
- <u>Indikatoren aus:</u> Bergek et al. und Hekkert et al. sowie aus drei weiteren TIS-Studien von Esmailzadeh et al. (2020) [5], Furtado et al. (2020) [6] und Wandera (2020) [7]
- Auf maximal fünf pro Hauptfunktion begrenzt
- Unternehmerisches Experiment Mith den Diagrammen werden den unterschiedlichen Indikatoren Werte von 1 bis 5 zugeordnet und somit der Erfüllungsgrad eines Indikators ermittelt
 - 1 steht für eine vollkommene Erfüllung der Indikatorleistung und 5 für einen mangelhaften, respektive unzureichenden Zielerfüllungsgrad

Systemfunktionalität anhand des funktionellen Musters Beispiel: Mobilisierung von Ressourcen

Steigendes Kapitalvolumen durch private und öffentliche Investitionen

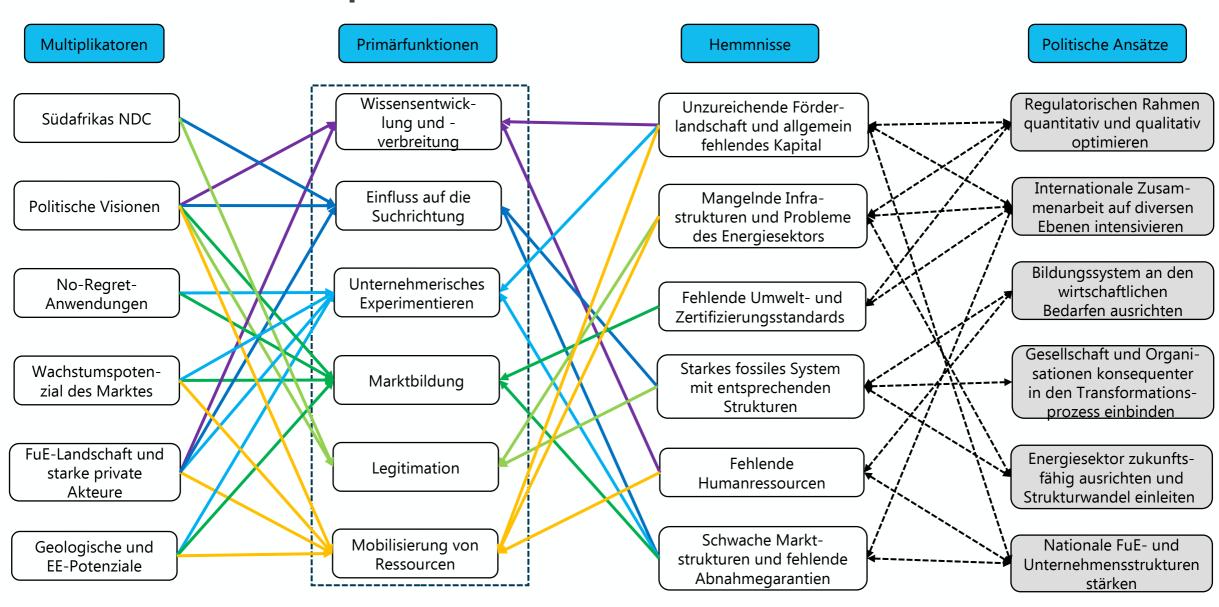
positive Veränderungen bei den Humanressourcen

- Projektfinanzierung durch private Investitionen gewährleistet, diese jedoch gleichzeitig an politische Vorhaben gekoppelt
- Aktuelle Infrastruktur der Entwicklung zweckdienlich, langfristig aber nicht ausreichend
- Starke Einschränkung bei der Bildung von Humankapital auf Grund schwacher und nicht zielgerichteter Schul- und Ausbildungsstrukturen
- Trotz gegenwärtiger Hemmnisse, Bestrebungen auf politischer Ebene zur Erweiterung der Zugänge

Systemfunktionalität anhand der Systemgüte

Bewertung der Systemgüte anhand einer Einordnung der Technologie in die Phase ihrer Entwicklung

Bergek et al. unterscheiden hier zwischen der Gestaltungs- (A) und Wachstumsphase (B):


- (A) Hohe Unsicherheit im Technologiefeld und demnach auch auf dem Markt aus
 - (B) Hochskalierung und Technologieverbreitung zu einem Massenmarkt

Unter Annahme der Entwicklungsphasen seitens Hekkert et al., befindet sich die Technologie in einem Zwischenstadium beider Phasen

Im System stehen primär die Aktivitäten zur Legitimation und Mobilisierung von Ressourcen im Vordergrund, was sich auf die Bewertung des funktionellen Musters auswirkt

Hemmnisse und Multiplikatoren des TIS in Südafrika

Abbildung 4: Analysematrix

Zusammenfassende Erkenntnisse aus dem TIS

Chancen

- Durch geologische Ressourcen sowie umfangreiche Potenzialflächen für EE eine starke Entwicklungsbasis
- Bestehende sowie vielfältige Forschungs- und Entwicklungslandschaft in Kombination mit starken Privatakteuren aus der Industrie
- Ambitionierte politische Bestrebungen und Visionen in Kombination mit dem prognostizierten Wachstumspotenzial des Marktes, den vorhandenen Optionen für No-Regret-Anwendungen sowie den vorgegebenen Klimabeiträgen Südafrikas

Hemmnisse

- Energiesektorale Probleme, bedingt durch Schieflage Eskoms sowie im Zuge dessen eine unterentwickelte Energieinfrastruktur
- Ein auf fossilen Rohstoffen basierendes Wirtschaftssystem mit enger Vernetzung zum Sozialsystem
- Gegenwärtig schwache Marktstrukturen sowie fehlende Anreize in der Förderlandschaft und ein ungenügendes Kapitalvolumen
- Verstärkung durch fehlende Umwelt- und Zertifizierungsstandards sowie unzureichend qualifizierte Humanressourcen
- Fehlende regulatorische Kohärenz durch isoliert stehende Pläne und Strategien

Ausblick

- Entwicklungen zum aktuellen Wasserstoffhochlauf nicht primär durch die Nachfrage aus einem bestimmten Sektor getrieben, sondern vor allem aus der Eigeninitiative privater Akteure
- Bedeutung bilateraler Kooperationen, wie zum Beispiel Energiepartnerschaften, zur Überwindung systemischer und struktureller Hemmnisse

Vielen Dank für Ihre Aufmerksamkeit!

Supported by:

on the basis of a decision by the German Bundestag

Lukas Kasper

<u>LukasKasper96@gmx.de</u> | <u>kasper@izes.de</u>

IZES gGmbH | Altenkesseler Straße 17, Gebäude A1 | 66115 Saarbrücken

Zugrundeliegende Masterarbeit verfügbar unter: https://doi.org/10.22032/dbt.59228

Implemented by

Referenzen

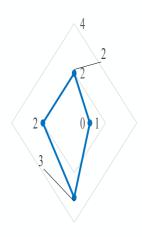
- 1. Matschoss, Patrick, et al (2021): Synthetische Kraftstoffe Ökonomie, Gesellschaft, Nachhaltigkeit. In: FVEE Themen: Forschung für den Green Deal. Beiträge zur FVEE-Jahrestagung 2020. Hg. vom ForschungsVerbund Erneuerbare Energien, Berlin.
- 2. Carlsson, Bo; Stankiewicz, Rikard (1991): On the nature, function and composition of technological systems. In: Journal of Evolutionary Economics (Volume 1, Issue 2), 93–118. Springer Science+Business Media LLC.
- 3. Bergek, Anna; Jacobsson, Staffan; Carlsson, Bo; Lindmark, Sven; Rickne, Annika (2008): Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. In: Research Policy 37 (3), S. 407–429. DOI: 10.1016/j.respol.2007.12.003.
- 4. Hekkert, Marko; Negro, Simona; Heimeriks, Gaston; Harmsen, Robert (2011): Technological Innovation System Analysis. A manual for analysts. Hg. v. Faculty of Geosciences. Copernicus Institute for Sustainable Development and Innovation. Universiteit Utrecht.
- 5. Esmailzadeh, Mohammad; Noori, Siamak; Aliahmadi, Alireza; Nouralizadeh, Hamidreza; Bogers, Marcel (2020): A Functional Analysis of Technological Innovation Systems in Developing Countries: An Evaluation of Iran's Photovoltaic Innovation System. In: Sustainability 12 (5), S. 2049. DOI: 10.3390/su12052049.
- 6. Furtado, André Tosi; Hekkert, Marko P.; Negro, Simona O. (2020): Of actors, functions, and fuels: Exploring a second generation ethanol transition from a technological innova-tion systems perspective in Brazil. In: Energy Research & Social Science 70, S. 101706. DOI: 10.1016/j.erss.2020.101706.
- 7. Wandera, Faith Hamala (2020): The innovation system for diffusion of small wind in Kenya: Strong, weak or absent? A technological innovation system analysis. In: African Journal of Science, Technology, Innovation and Development 13 (5), S. 527-539. DOI: 10.1080/20421338.2020.1771979.

Anhang

	Bergek et al.		Hekkert et al.	
	2008	Indikatoren	2011	Indikatoren
	Funktionen	Indikatoren	Funktionen	muikatoren
	Wissensentwickl	Bibliometrie, FuE-Projekte, Anzahl der	Entwicklung	Umfang der
	ung und -	Professuren und Patente, Bewertung von	von Wissen	Patente und
1	diffusion		VOIT WISSELL	
	airusion	Managern, Lernkurven		Veröffentlichunge
	Finflussnahme	Erwartetes Wachstumspotenzial,	Leitung/	n Regulierung,
	auf die		_	Schlüsselakteure,
2		Anreizsysteme, Regulierungsdruck,	Steuerung der	·
	Suchrichtung	Kundeninteressen	Suche	Visionen,
		Accorded the conservation	Hartana dan aria	Erwartungen
	Unternehmerisc	Anzahl der neuen	Unternehmeris	Akteure in der
	hes	Marktteilnehmer/Diversifizierung, Anzahl	ches	Industrie
3	Experimentieren	der verschiedenen Anwendungen, Vielzahl	Experimentiere	
		von Technologien und Art der	n und	
		komplementär genutzten Technologien	Produzieren	
4	Marktbildung	Marktgröße, Kundengruppen, Strategien,	Marktbildung	Realisierte
		Standards, Einkaufsprozesse		Projekte
	Legitimation	Position der Akteure und Stakeholder,	Widerstand	Zeit, die Projekte
		Aktivitäten zur Erhöhung der Legitimation,	gegen den	für ihre
5		Veränderungen in der Nachfrage,	Wandel/Legitim	Realisierung
		Ausrichtung TIS/ Gesetzgebung/ Wirtschaft/	itätsbildung	benötigen
		Gesellschaft		
	Mobilisierung	Steigendes Kapitalvolumen, Veränderungen	Mobilisierung	Ressourcen:
6	von Ressourcen	bei den Humanressourcen, Veränderungen	von Ressourcen	materiell,
		bei komplementären Vermögenswerten		menschlich,
				finanziell
	Entwicklung von	Abnehmende Unsicherheiten, politische	Austausch von	Netzwerke
7	positiven,	Macht, Legitimität, gebündelte	Wissen	
	externen	Arbeitsmärkte, Chancen, spezialisierte		
	Effekten	Zwischenhändler, Informationsflüsse		

Anhang

Anzahl an FuE-Projekten


Anzahl an Patenten und Veröffentlichungen

ausreichende physische Infrastruktur (Forschungszentren, Labore, Rohstoffe, etc.)

Wissensaustausch durch Kooperationen, Netzwerke, Konferenzen

Bildung von Humankapital und Investitionen in die Entwicklung

Regierungsdruck und politische Ziele

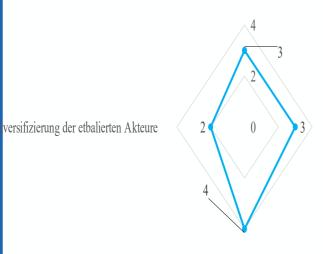
Erwartetes Wachstumspotenzial und Visi

Anreizsysteme und Programme

Wissensentwicklung und -verbreitung

Einfluss auf die Suchrichtung

Bedarfe und Interessen in der Industrie in Bezug auf die Technologie


www.izes.de

15.02.2024

15

Anhang

Anzahl der neuen Markteilnehmer

Anzahl der verschiedenen Anwendungen/Technologiekomponenten

Anzahl an Pilotanlagen mit der neuen Technologie

Marktgröße

Sundengruppen

Tealisierte Projekte

Toler of the state of

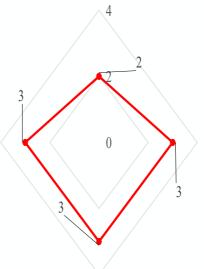
steuerliche Reglungen in Bezug auf die Technologie

Markt-, Umwelt- und Zertifizierungsstanda

<u>Unternehmerisches Experimentieren</u>

Marktbildung

www.izes.de


Position der Akteure und Stakeholder

Veränderungen in Gesellschaft und Wirketrafferke und Kooperationen

Aktivitäten zur Erhöhung der Legitimation

Politische Macht und Vorgaben

Abnehmende Unsicherheiten in Bezug auf die Ressourc

Marktetablierung und Chancen

Entwicklung positiver, externer Faktoren

Legitimation

Anhang

Akteure	Rolle für das TIS	
Anglo American Platinum	Primärer Akteur mit hohem Einfluss	
Impala Platinum Holdings (Implats)	Primärer Akteur mit hohem Einfluss	
Sasol	Primärer Akteur mit hohem Einfluss	
ArcelorMittal	Primärer Akteur mit hohem Einfluss	
ENERTRAG South Africa	Primärer Akteur mit geringem Einfluss	
Isondo Precious Metals	Primärer Akteur mit geringem Einfluss	
Bambili Energy	Primärer Akteur mit geringem Einfluss	
HyPlat	Primärer Akteur mit geringem Einfluss	
Hydrox Holdings	Primärer Akteur mit hohem Einfluss	
CHEM Energy SA	Primärer Akteur mit geringem Einfluss	
Engie	Primärer Akteur mit hohem Einfluss	
Siemens	Primärer Akteur mit geringem Einfluss	
Hyena Energy	Primärer Akteur mit geringem Einfluss	
Sibanye Stillwater	Primärer Akteur mit hohem Einfluss	
Linde Engineering South Africa (Pty) Ltd.	Primärer Akteur mit hohem Einfluss	
Cape Stack	Primärer Akteur mit geringem Einfluss	
Eskom	Primärer Akteur mit hohem Einfluss	
Transnet	Primärer Akteur mit hohem Einfluss	
Petroleum, Oil and Gas Corporation of South Africa (PetroSA)	Primärer Akteur mit hohem Einfluss	
National Energy Regulator of South Africa (NERSA)	Primärer Akteur mit hohem Einfluss	
Department of Mineral Resources and Energy (DMRE)	Primärer Akteur mit hohem Einfluss	
Department of Science and Innovation (DSI)	Primärer Akteur mit hohem Einfluss	
Investment and Infrastructure Office (IIO)	Veto-Spieler	
Department of Transport (DoT)	Primärer Akteur mit geringem Einfluss	
Department of Basic Education (DoE)	Primärer Akteur mit geringem Einfluss	
Department of Higher Education and Training (DHET)	Primärer Akteur mit geringem Einfluss	
Council of Scientific and Industrial Research (CSIR)	Primärer Akteur mit hohem Einfluss	
HySA-Institut mit drei Kompetenzzentren: Infrastructure mit North-West University		
(NWU) und CSIR, Catalysis mit University of Cape Town (UCT) und Council for Mineral	Primärer Akteur mit hohem Einfluss	
Technology (MINTEK), Systems mit University of the Western Cape (UWC)		
South African National Energy Development Institute (SANEDI)	Primärer Akteur mit hohem Einfluss	
non-HySA Universities	Primärer Akteur mit geringem Einfluss	