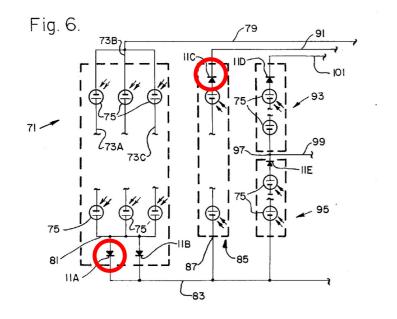
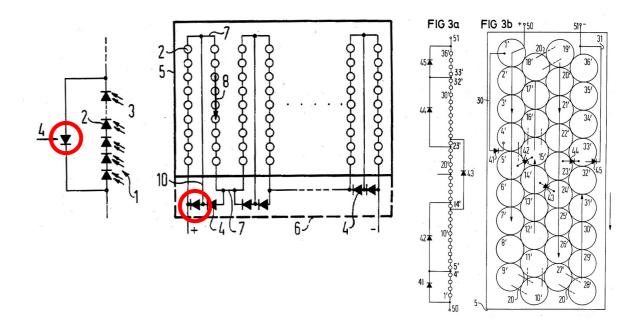

Zurich University of Applied Sciences

Weniger Komplexität und mehr Zuverlässigkeiter hinter jedem Solarmodul




F. Baumgartner, A. Widler, L. Baumann, Cyril Allenspach Zurich University of Applied Sciences, School of Engineering, IEFE, Switzerland; www.zhaw.ch/=bauf Energie-Innovationen, Vortrag in Session D2 am 15.02.2024, Graz, Österreich

Blocking- and bypass diodes to protect PV modules

2

Blocking diode

Wolff, G. et al., 1973 patent US3952324 Solar Panel Mounted Blocking Diode Hughes Aircraft, California US

Bypass diode

Hollaus, R. et al., 1984 applied, patent US 4567316 Solar Cell Modul Siemens, Germany

15.02.2024 F. Baumgartner

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

Time line in PV module BD design and shading analyses

- 1964 PV in Space started with diodes to fix malfunction; W. Baron, Effect of shadows
- 1984 Bypass Diodes (BP) wiring in the PV module Siemens
- 1994 DC/AC Module inverter OKE4 H. Oldenkamp EUPVSEC, Solar Energy2003
- 2010 DC/DC Solar Edge introduced Optimizer EUPVSEC talk
- 2017 Low forward voltage (30mV) bypass diode for each cell W.v. Sark, Prog. PV
- 2020 Losses of Optimizer are critical ZHAW EUPVSEC 20 & 21
- 2021 Electrical Yield of shaded single modules, several BD– TU Delft, Solar Energy
- 2022 Short strings & string inverters, reliability Tesla white paper
- 2023 Shading Tolerant Utility Module Wiring ISE FhG L. Rendler, IEEE PVSC

F. Baumgartner

15.02.2024

Power electronic setups used by PVshade

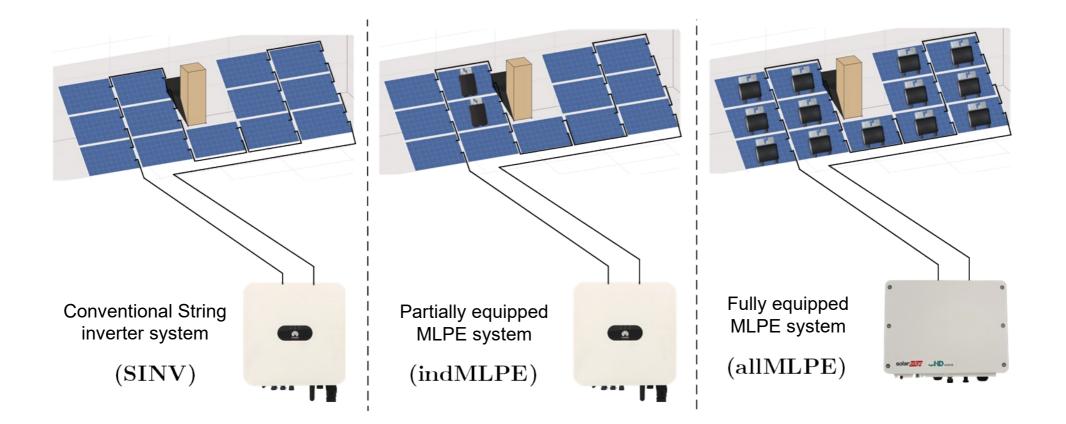
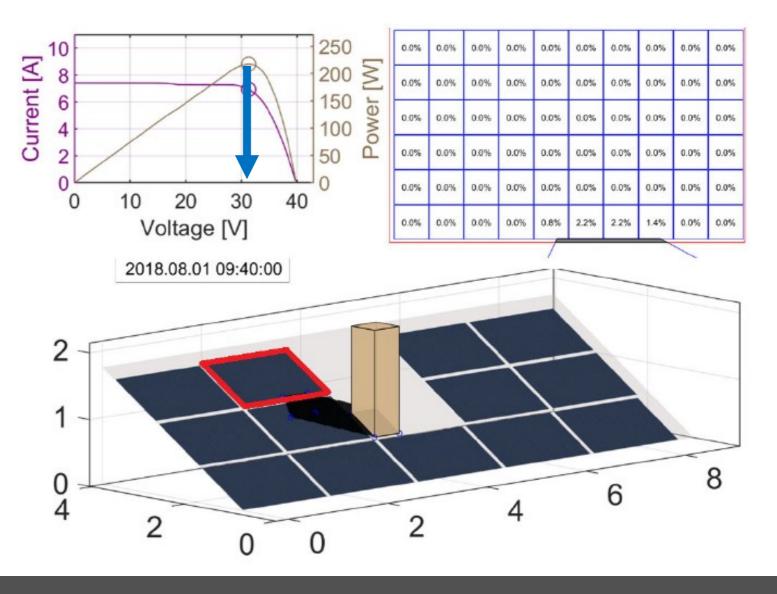


Abb. 6 – Overview of common PV system configurations investigated in the thesis (from left to right). Conventional string inverter system without MLPE (SINV), system with independent optimizer in which a few shaded PV modules are equipped with power optimizer of the buck converter type (indMLPE) and a PV system in which all PV modules are equipped with a power optimizer (allMLPE).

15.02.2024 F. Baumgartner

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf


1. Introduction 2. Simulation + Indoor Measurement 3. Performance Results

4. Conclusion Outlook

Example: Shading situation 1 at 9:40

- Optimum voltage
 of shaded PV module
 at about Vmp= 30V
- MLPE and SINV equal before 9:40

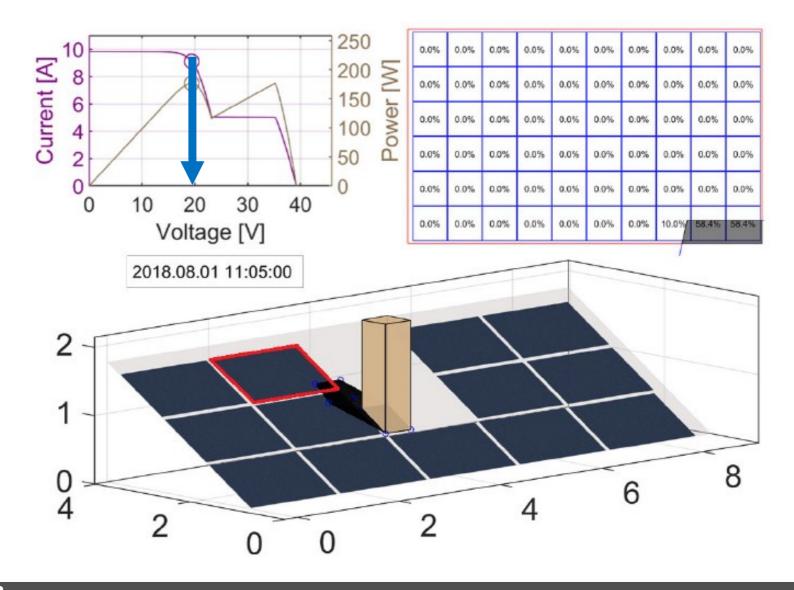
15.02.2024 F. Baumgartner Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

1. Introduction

2. Simulation + Indoor Measurement 3. Performance Results 4. Conclus

4. Conclusion Outlook

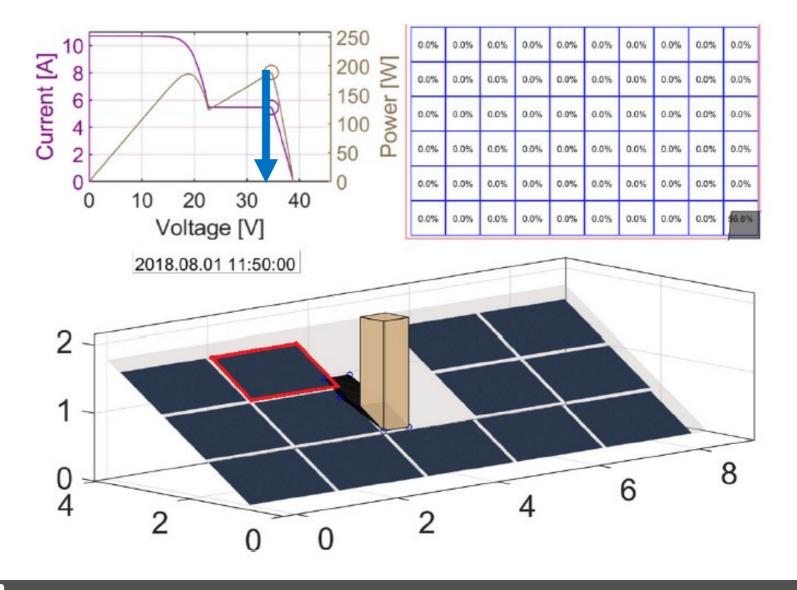
Example: Shading situation 1 at 11:05


- Optimum voltage
 of shaded PV module
 at about Vmp= 20V
- MLPE beneficial at 30V form 9:40 to 11:05
- SINV and MLPE same operating point from 11:05 to 11:50

F. Baumgartner

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

1. Introduction


15.02.2024

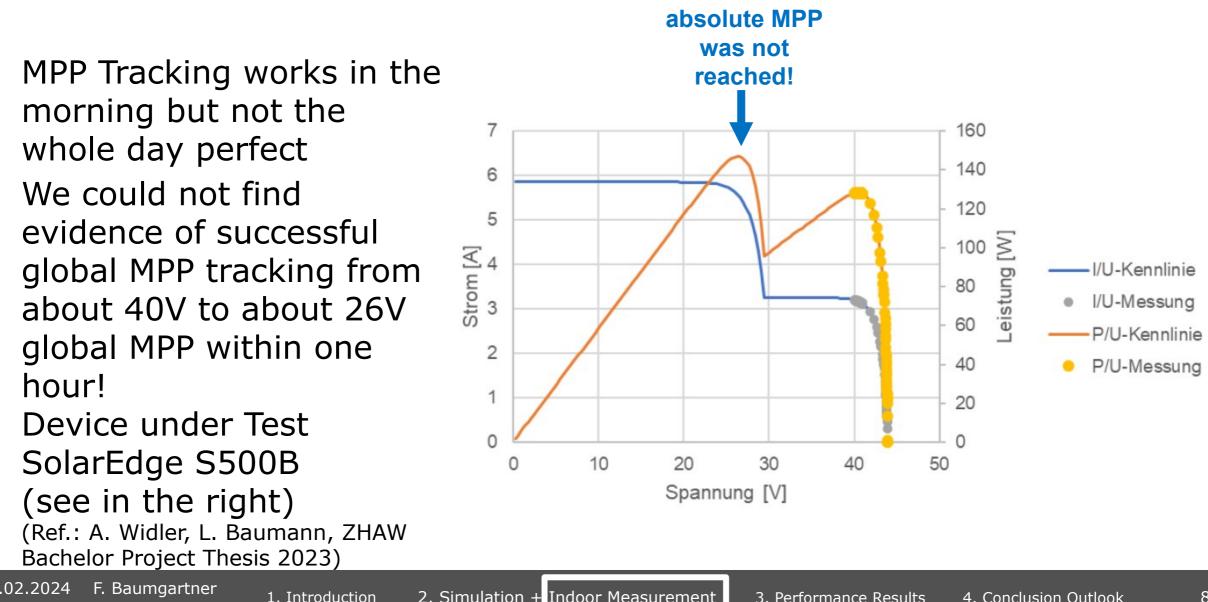
Example: Shading situation 1 at 11:50

- Optimum voltage
 of shaded PV module
 at about Vmp= 32V
- MLPE beneficial for about only 10 minutes

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

F. Baumgartner

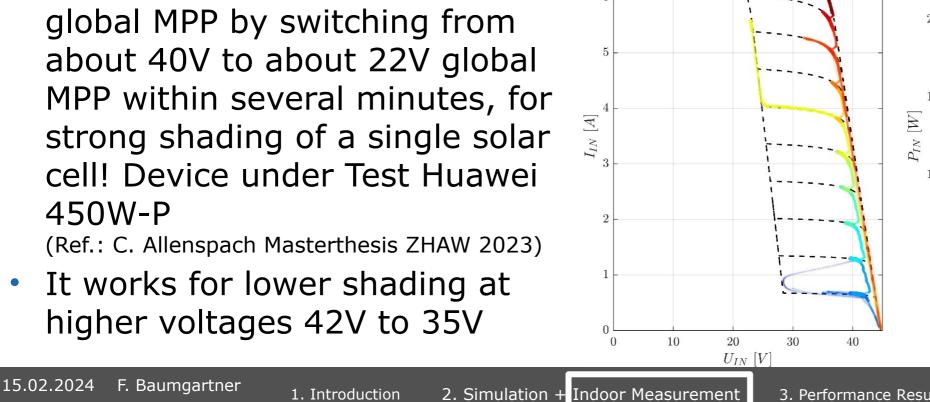
15.02.2024


1. Introduction

2. Simulation + Indoor Measurement 3. Performance Results 4. Conclu

4. Conclusion Outlook

ZHAW Labtest 1 - commercial MPP Tracking failed



hour!

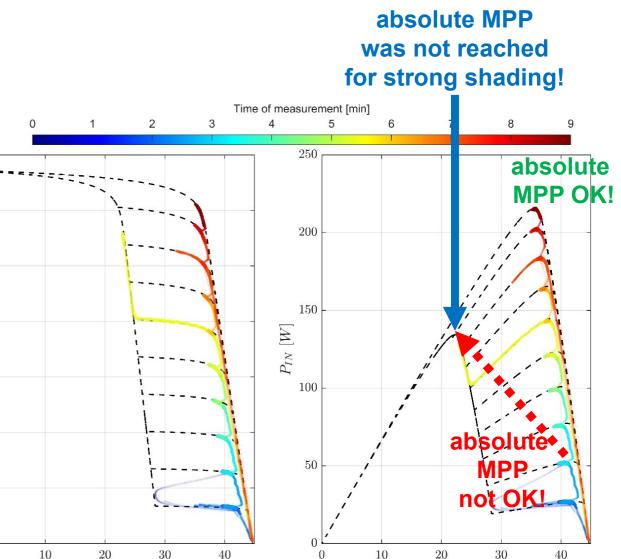
15.02.2024

2. Simulation + Indoor Measurement

MPP Tracking works in the morning

MPP failures occurred to find global MPP by switching from about 40V to about 22V global MPP within several minutes, for strong shading of a single solar cell! Device under Test Huawei 450W-P

(Ref.: C. Allenspach Masterthesis ZHAW 2023)


1. Introduction

 It works for lower shading at higher voltages 42V to 35V

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

 $U_{IN} [V]$

3. Performance Results

ZHAW Labtest 1 - commercial MPP Tracking failed

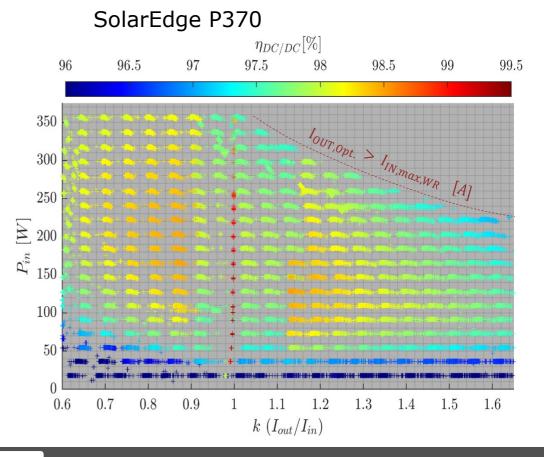
ZHAW PVshade method for yield calcuation

Annual simulation Indoor measurement of shadow propagation & losses for each of power electronic components in the power electronic component / optimizer relevant operation area Umax, DC < ±240 V 10 x SolarEdge Power (1.5 Solar Array Simulator Agilent E4362A - N. 4129 AC I_{SC,ma} U_{max} 0.5 ** UMPP Agilent E4362A - N. 4128 Solar Array Simulator Agilent E4362A - N. 4127 Solar Array Simulator $\eta_{DC/DC}$ [%] Agilent E4362A - N. 4126 97.598.599.5Agilent E4362A - N. 4125 AC 250= 130 Selected Module: 7 Solar Array Simulator Shading: 53.3% Agilent E4362A - N. 4124 AC Module No 7, 17.06.2018 Solar Array Simulator 200 Agilent E4362A - N. 4123 AC Agilent E4362A - N. 4122 AC $\underline{\mathbb{R}}^{150}$ Solar Array Simulator Agilent E4362A - N. 4121 AC Ğ 100 ► Solar Array Simulator DC Agilent E4362A - N. 4120 AC 50DC 1-Phase Inverter SolarEdge SE3500H Transformer-less, P_{AC,max} = 3.5 kVA AC 0.80.9 1.11.21.31.41.5 $k (I_{out}/I_{in})$ C. Allenspach, F. Baumgartner, et al. Sol. RRL 2022, 2200596 25.02.2024 F. Baumgartner 2. Simulation + Indoor Measurement 1. Introduction

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

3. Performance Results

4. Conclusion Outlook


Efficiency of Module Level Power Electronic (MLPE)

School of Engineering IEFE Institute of Energy Systems and Fluid-Engineering

Indoor Lab – Measurement

PV-Wechselrichter	Power Optimizer
SMA SunnyBoy 3.6	Solaredge P370
Solaredge SE3500	Solaredge P370i
Solaredge SE3500H	Solaredge P405
Huawei SUN2000-3.68KTL	Solaredge S500B
Fronius Symo 5kW	Huawei SUN2000-450W-P
	Tigo TS4-A-O

Results data sheet -1.5%

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

2. Simulation + Indoor Measurement

3. Performance Results

Several DC/DC optimizer analysed at ZHAW

- Findings: massive
 Eff. reductions -2%
- Data sheet values shown only at highest 99% ratings U_{in}=U_{out}
- Problem: for this operating condition DC/DC converters are in the non-switching mode!!

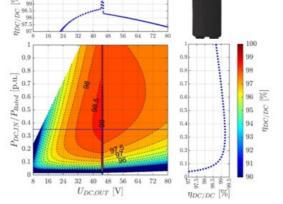


Figure 12: DC/DC efficiency mapping of the triple-mode power loss model (individual power loss calculation for buck, boost and passthrough mode), as a function of the relative DC input power, $P_{DC,IN}/P_{Rester}$ [Rull,], and DC output voltage, $U_{DC,OUT}$ [V], for the SolarEdge S500B (2023 Edition) - based on 157'900 points of measurement. Input voltage was set to 45V.

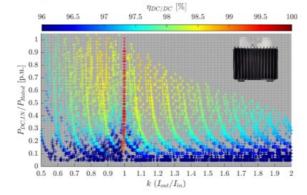


Figure 13: SolarEdge S500B static DC/DC efficiency \underline{n}_{OCPOC} measurement with a constant input voltage, $U_{IN} = [\underline{20.:} 5:80]V$ as a function of the output to input current ratio I_{OUT}/I_{IN} , $\underline{k}_{e} = [0.5:2]$ and $P_{IN} = [0.05:1]$ \underline{P}_{Rester} .

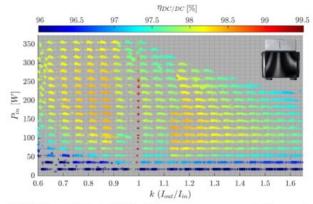


Figure 14: SolarEdge P370 static DC/DC efficiency $\mathbf{q}_{\text{De/DC}}$ measurement with a constant input voltage, $U_{\text{IN}} = 35V$ as a function of the output to input current ratio $I_{\text{OUT}} \Pi_{\text{IN}}$, $\mathbf{k}_{\text{N}} = [\underline{0.6.:} 1.65]$ and input power, $P_{\text{IN}} = [0.05:1]$ relative to $\underline{P}_{\text{Relevent}}$

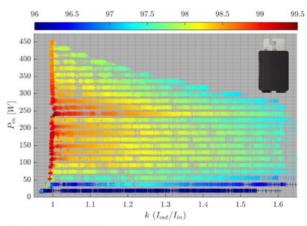
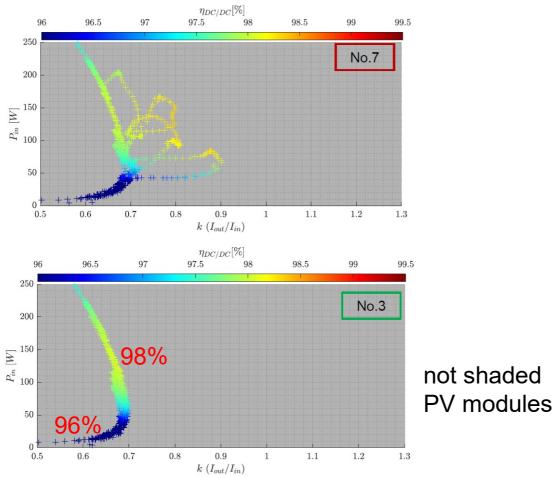


Figure 15: Huawei SUN2000-450W-P static DC/DC efficiency n_{Decroc} measurement with a static input voltage, $U_{\text{IN}} = 35V$ as a function of the output to input current ratio $I_{\text{OUT}}/I_{\text{IN}}$, $k_{\text{A}} = [0.95:1.6]$ and input power, $P_{\text{IN}} = [0.05:1]$ relative to P_{Decroc} [13].

15.02.2024 F. Baumgartner

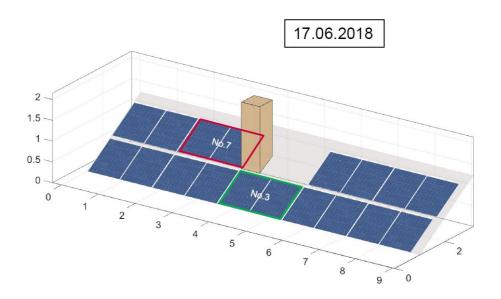

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

1. Introduction

2. Simulation + Indoor Measurement

3. Performance Results

Plant design recommendation – low yield

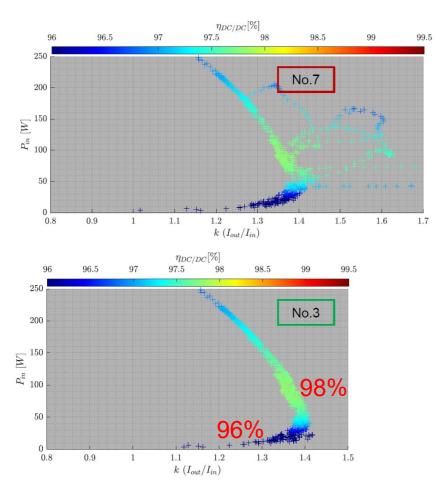


1. Introduction

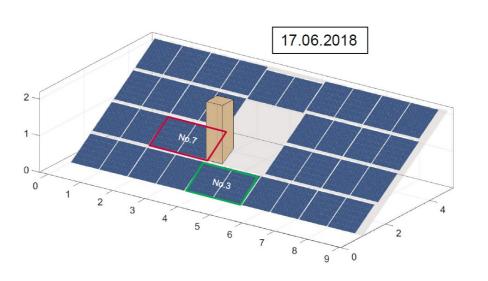
Optimizer SolarEdge P370 inverter at DC input 370V

School of

EFE Institute of Energy Systems


- High DC/DC losses if only 9 Optimizer used in the allMLPE string
- Optimizer efficiency 96% to 98% at 50% nominal power of module

F. Baumgartner Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf


15.02.2024

4. Conclusion Outlook

Plant design recommendation – low yield

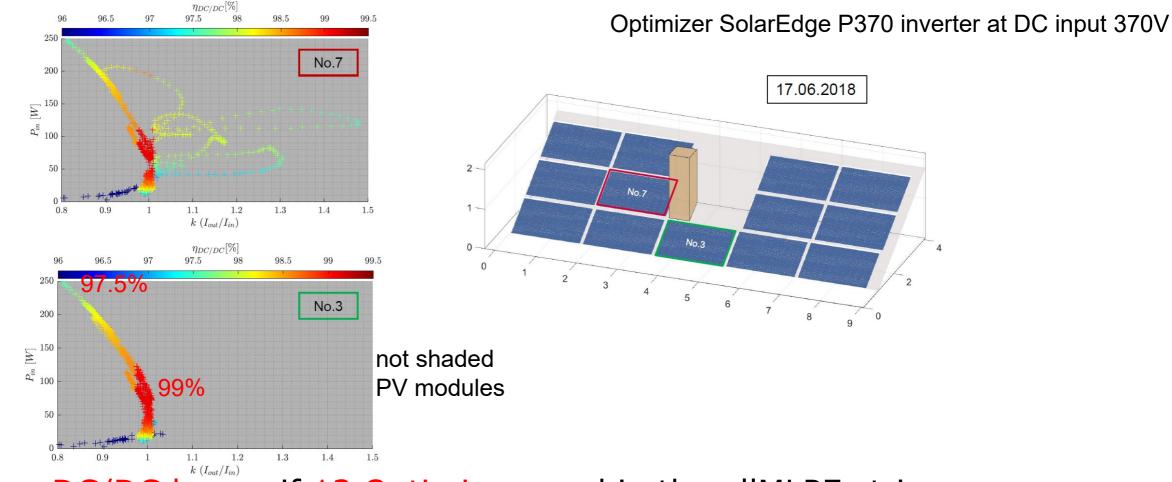
Optimizer SolarEdge P370 inverter at DC input 370V

not shaded PV modules

- High DC/DC losses if max 18 Optimizer used in the allMLPE string
- Optimizer efficiency 96% to 98% at 50% nominal power of module

F. Baumgartner <u>1. Introduction</u>

15.02.2024


Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

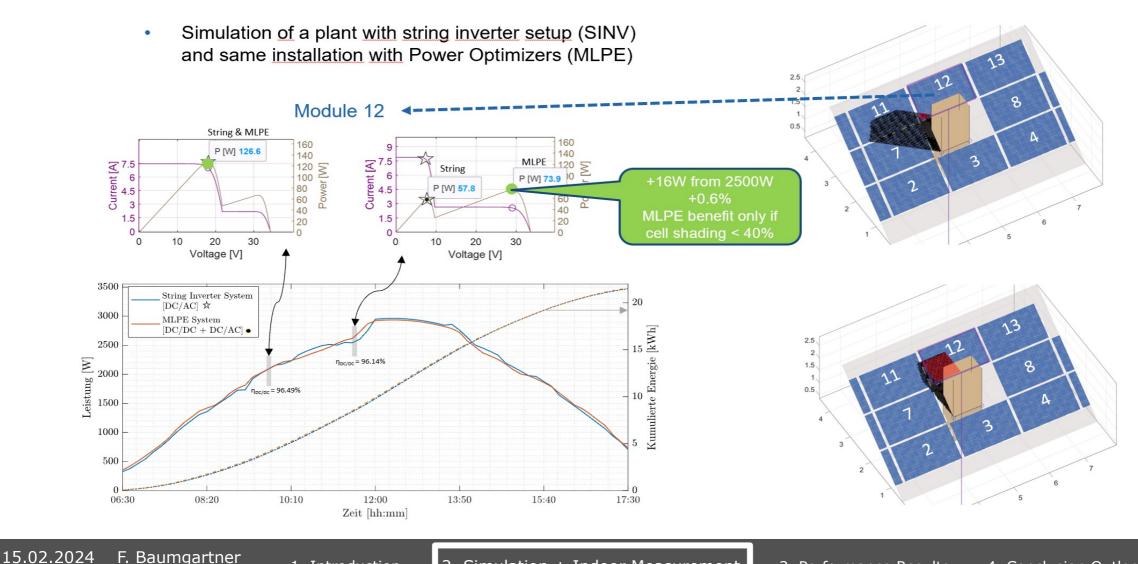
School of

EFE Institute of Energy Systems

Plant design recommendation – high yield

- Low DC/DC losses if 13 Optimizer used in the allMLPE string
- Optimizer efficiency 97.5% to 99% at 30% nominal power of module

F. Baumgartner 1. Introduction


15.02.2024

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

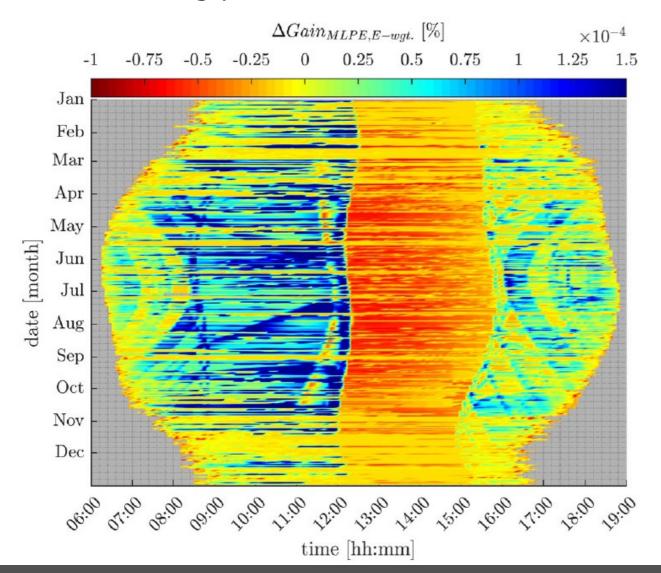
2. Simulation + Indoor Measurement 3. Performance Results 4. Conc

4. Conclusion Outlook

Theoretical annual yield gain at 100% DC/DC efficiency

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

1. Introduction


2. Simulation + Indoor Measurement

16

School of

Gain of MLPE reduced by higher optimizer losses at low shading periods -see afternoon in annual mapping

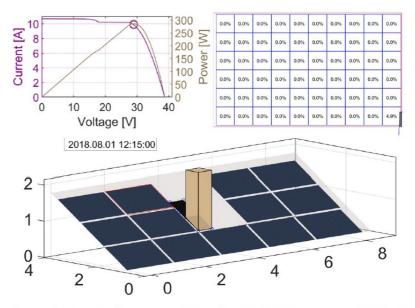
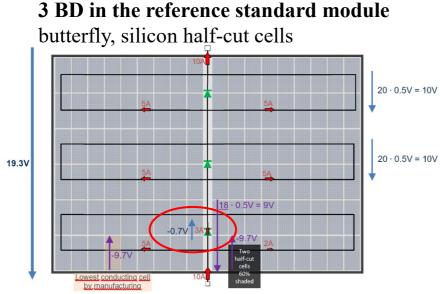
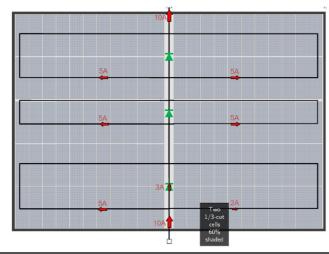


Figure 8. Fourth time step of the simulated PV system at 12:15 of August 1, 2018 (same shading scenario as described in the caption

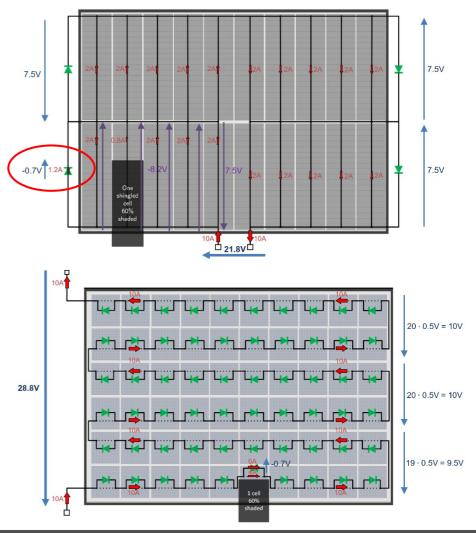
15.02.2024 F. Baumgartner


Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

2. Simulation + Indoor Measurement 3. Performance Results

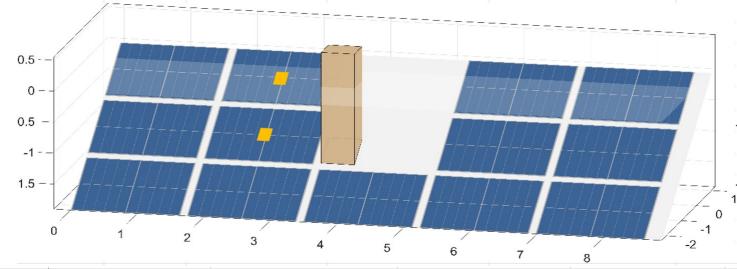

4. Conclusion Outlook

Shading tolerant modules analysed by PVshade



1. Introduction

Shading Tolerant PV Module



Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

F. Baumgartner

15.02.2024

ZHAW PVshade results – low shading by chimney and Effective of Energy Systems and Fluid-Engineering

Relative	e Annual Energy	Full Cell PV Module	Half-cut cell PV Module	Third-cut cell PV Module	4 quadrant shingled	Shading-resistant All Cells + Diode	
Unsh	aded + no losses			100			%
sh	aded + no losses	96.8	96.8	96.8	98.4	97.8	%
SINV	Relative Energy	93.0	92.9	92.7	94.0	93.9	%
indMLPE	Relative Energy	93.8	93.6	93.1	94.6	94.8	%
INDIVILPE	MLPE Gain	0.9	0.8	1.1	0.6	0.4	%
allMLPE	Relative Energy	93.3	92.8	93.7	94.4	94.2	%
amvilpe	MLPE Gain	0.3	-0.2	0.4	0.3	-0.1	%
Ave	rage Rel. Energy	93.3	93.1	93.2	94.4	94.3	%
		Max. SINV diff.:	1.4%		Max. allMLPE diff.	: 1.2%	
		Max. indMLPE diff.:	1.8%	+1.8%	lax. Difference Tot	: 2.1%	

15.02.2024 F. Baumgartner

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

er 1. Introduction

2. Simulation + Indoor Measurement

School of

ZHAW PVshade results – low shading

					+1.8%			
-			Full Cell	Half-cut cell	Third-cut cell	4 quadrant	Shading-resistant	
/	Relativ	e Annual Energy	PV Module	PV Module	PV Module	shingled	All Cells + Diode	
0.5	Unshaded + no losses			/	100			%
	sh	aded + no losses	96.8	96.8	96.8	98.4	97.8	%
	SINV	Relative Energy	93.0	92.9	92.7	94.0	93.9	%
	indMLPE	Relative Energy	93.8	93.6	93.1	94.6	94.8	%
		MLPE Gain	0.9	0.8	1.1	0.6	0.4	%
0 1 2 3 4 5 6 7 8	allMLPE	Relative Energy	93.3	92.8	93.7	94.4	94.2	%
#12 D / madulas		MLPE Gain	0.3	-0.2	0.4	0.3	-0.1	%
#13 PV modules	Ave	erage Rel. Energy	93.3	93.1	93.2	94.4	94.3	%
SI about 2%								
			Max. SINV diff.:	1.4%		Max. allMLPE diff.:	1.2%	
			Max. indMLPE diff.:	1.8%	Ν	Aax. Difference Tot:	2.1%	
	+3.1%							
			Full Cell	Half-cut ceil	Third-cut cell	Shading-resistant	Shading-resistant	
			PV Module	PV Module	PV Module	4 quadrant	All Cells + Diode	
	Unshaded + no losses			/	100			%
	sł	naded + no losses	95.3	96.0	95.8	98.0	97.0	%
	SINV	Relative Energy	90.7	91.7	91.2	93 0	92.9	%
-0.5	indMLPE	Relative Energy	92.1	92.7	92.1	93.8	93.4	%
	INGINEFE	MLPE Gain	1.4	1.1	1.6	0.8	0.5	%
	allMLPE	Relative Energy	91.6	91.9	92.6	93.9	93.0	%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		MLPE Gain	0.9	0.3	1.1	0.9	0.1	%
	Ave	rage Rel. Energy	91.5	92.1	92.0	93.6	93.1	%
#14 PV modules								
SI about 3%			Max. SINV diff.: 1.9%		Max. allMLPE diff.: 2.3%			
			Max. indMLPE diff.:	1.3%	Max. Difference Tot	: 2.2%		
15.02.2024 F. Baumgartner 1. 1 Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf	Introductic	n 2. Simu	lation + Indoor M	leasurement	3. Performance Resul	ts 4. Conclusio	n Outlook	20

ZHAW PVshade results – medium dormer shading

smaller					+4.3%				
			Full Cell	Half-cut cell	Third-cut cell	Shading-resistant	Shading-resistant		
gap			PV Module	PV Module	PV Module	4 quadrant	All Cells + Diode		
	Unsh	aded + no losses			100			%	
	sh	aded + no losses	94.3	93.3	93.5	96.5	96.6	%	
-1.5 -	SINV	Relative Energy	88.4	87.4	87.1	90.8	92.3	%	
0 1 2 3 4 5 6 7 2 -101	indMLPE	Relative Energy	90.6	88.7	88.7	91.6	92.7	%	
9 10 -	INDIVILPE	MLPE Gain	1.4	1.4	1.7	0.8	0.3	%	
#14 PV modules	allMLPE	Relative Energy	89.6	89.4	89.7	92.5	92.7	%	
SI about 3 - 6%	alliviLFE	MLPE Gain	2.4	2.2	2.9	1.8	0.4	%	
ST about 3 - 6%	Aver	age Rel. Energy	89.5	88.5	88.5	91.7	92.5	%	
			Max. SINV diff.:			Max. allMLPE diff.:	3.0%		
			Max. indMLPE diff.:	3.9%		lax. Difference Tot:	5.5%		
larger					+3.0%				
			Full Cell	Half-cut cell	Third-cut cell	Shading-resistant	Shading-resistant		
gap	Relative Annual Energy Unshaded + no losses		PV Module	PV Module	PV Module	4 quadrant	All Cells + Diode		
+15cm					100			%	
	sh	aded + no losses	95.2	94.4	94.6	97.3	97.1	%	
	SINV	Relative Energy	90.1	89.1	88.9	92.1	92.9	%	
	indMLPE	Relative Energy	91.0	90.0	90.1	92.6	93.1	%	
	INDIVILPE	MLPE Gain	1.0	1.1	1.4	0.6	0.3	%	
	allMLPE	Relative Energy	91.4	90.4	90.8	93.2	<mark>93</mark> .1	%	
2 3 4 5 6 7 8 9 10 -2 1	alliviLPE	MLPE Gain	1.5	1.5	2.1	1.2	0.3	%	
	Ave	erage Rel. Energy	90.8	89.8	90.0	92.6	93.0	%	
#14 PV modules							00/		
SI about 3 -5%	Max.		Max. SINV diff.:	Max. SINV diff.: 3.9%		Max. allML +1.0%			
SI about 5 -570		Max. indMLPE diff.: 3.0%				Max. Difference rot. 4.5/			
15.02.2024 F. Baumgartner	Introductio	on 2 Simi	Ilation + Indoor N	Measurement 3	3. Performance Resu	lts 4. Conclusi	on Autlook	21	

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

Several shading situations are analysed by the use of ZHAW PVShade Tool

			Shading	Simu	lated annual	yield [kWh]		MLPE
Cases	No:	Shading Severity	index SI _{DC,Max} [%]	no shading & no loss [kWh]	no losses [kWh]	allMLPE [kWh]	SINV [kWh]	Gain [%]
Dormer (s)	1	Low	0.9	4410	4368	4207	4247	-1.0
Vent. Pipe	2	Low	2.9	4410	4282	4122	4129	-0.2
Chimney	3	Low	3.6	6337	6109	5904	5858	0.8
Tree 1	4	Medium	5.0	5295	5029	4862	4802	1.3
Tree 2	5	Medium	6.0	4410	4145	3987	3926	1.5
Building	6	Medium	7.9	4410	4062	3905	3802	2.7
Dormer (L)	7	Heavy	9.1	5295	4812	4643	4435	4.7
Roof Edge	8	Heavy	12.7	4410	3847	3693	3621	2.0

Ref: [1] C. Allenspach, F. Baumgartner, et al. Sol. RRL 2022, 2200596

1. Introduction

[2] C. Allenspach, 4DO.1.1, EUPVSEC 2023

[3] F. Baumgartner et. al., IEA PVPS Task 13 Subtask 2.5 Final Report, partial shading 2024

15.02.2024 F. Baumgartner

2. Simulation + Indoor Measurement

3. Performance Results

4. Conclusion Outlook

Remarks

Ref [1]

Shading Index definition

Definition described in

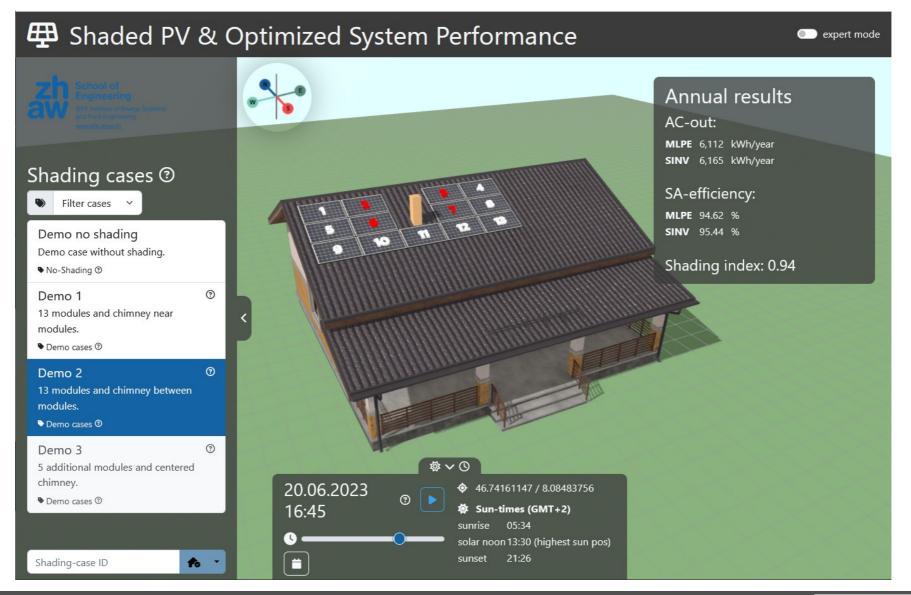
according to NREL's Ref. [4]

Shading Adaption Efficiency

allMLPE all optimizer systems

SINV String Inverter Systems

annual yield gain using allMLPE versus SINV for specific efficient components described in [1, 2]]


MLPE Gain shows the %

22

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

ZHAW interactive website WebPVshade

15.02.2024 F. Baumgartner

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

1. Introduction

2. Simulation + Indoor Measurement

3. Performance Results

4. Conclusion Outlook

Conclusions and Recommendations

on the roofs

- Don't trust the sales departments of DC/DC power optimizer (MLPE) if they are claiming several 10% yield gain, this is typical not annual yield!
- Don't trust manufactures optimizer date sheet values if they are promising 99% average optimizer efficiency (typical between 96 to 98%) – ask about efficiency mapping
- For heavy shading, all optimizer PV plant solution will offer highest yield or PV plants with different PV module orientation and to short strings
- For medium shading max yield is found for conventional string inverter using shading tolerant modules plus independent optimizer. Without optimizer the annual yield is only slightly reduced, about 1%
- Shading tolerant modules equipped with too many additional bypass diodes, above about 6 produce, will produce more losses
- For low shading use string inverter without optimizer and no shading tolerant modules
- Shading tolerant modules with a few robust bypass diodes without optimizer helps to increase reliability and thus reducing risk of costs of € if modules or optimizer have to be replaced on the roof, of up to thousand or several thousand € manpower.
- Try to reduce high sophisticated power electronics and control devices to mount behind

2. Simulation + Indoor Measurement

notempolyles

Thank you for your attention

Franz & Co-authors ZHAW website

See also webpage of International Energy Agency IEA PVPS T13 side events, PV & Shading Subtask 2.5 and final report at end of 2024 <u>https://iea-pvps.org</u>

C. Allenspach, F. Baumgartner, et al. Solar. RRL 2022; Wiley Jou

PV Optimizer Performance Talk

https://youtu.be/NILg1MOyvWg

EUPVSEC 2021 video

F. Baumgartner, <u>bauf@zhaw.ch</u> further papers <u>www.zhaw.ch/=bauf</u> and also <u>www.zhaw.ch/~bauf</u> 15.02.2024

Average shading efficiency on the data sheets

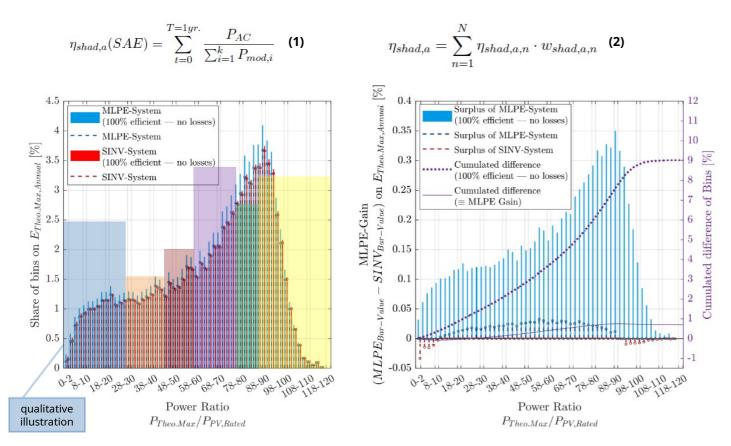


Figure 10 – Statistical illustration of the proportion of the individual bins in relation to their power ratio (Power Ratio = $P_{Theo,Max}/P_{PV,Rated}$) based on the annual simulation of a PV system with 13 modules and chimney shading.

1. Introduction

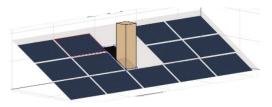


Figure 9 – 3D model of a PV system with 13 modules and chimney shading.

Quantity for performance with shading

Shading Adaption Efficiency:

What percentage of the maximum DC power of all solar modules can be fed into the grid. (individual modules are operated at the individual optimum - assumption: 100% efficient MLPE).

 Statistical evaluation to identify weighting factors and determine operating points.

Table 2 – Description of the defined weighting factors $\boldsymbol{w}_{shad,a,n}$ and characteristic shading moments \boldsymbol{n} for the chimney shading case.^[1]

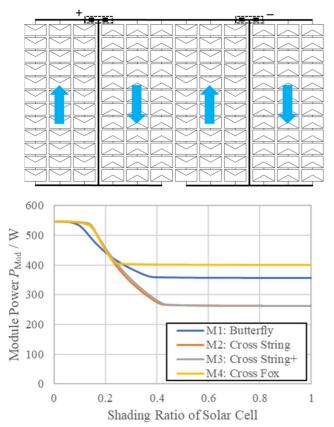
Shading moments n :	1	2	3	4	5	6
Power ratio [%]						
$P_{MLPE-noLoss,Max}/P_{PV,rated}$:	0-30	31 - 44	45 - 60	61 - 78	79-88	89-120
Weighting factors						
$w_{shad,a,n}$:	0.16	0.10	0.13	0.22	0.18	0.21
Date + Time of	July 3rd,	April 3rd,	Aug. 13th,	Sept. 4 th ,	June 9 th ,	April 17th,
shading moments n :	10:55	08:55	10:00	14:50	14:35	12:20

[1] C. Allenspach, F. Carigiet, A. Bänziger, A. Schneider and F. Baumgartner; "Power Conditioner Efficiencies And Annual Performance Analyses With Partially Shaded Photovoltaic Generators Using Indoor And Shading Simulations," Solar RRL, Wiley, 2022.

15.02.2024 F. Baumgartner

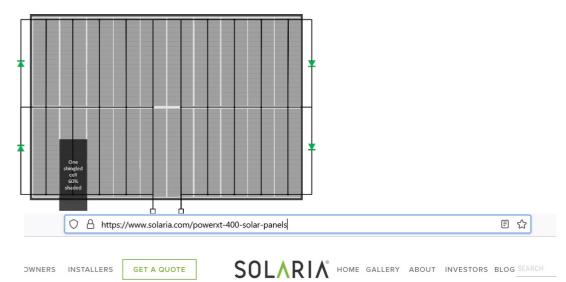
Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf

2. Simulation + Indoor Measurement


3. Performance Results

4. Conclusion Outlook

Robust NEW shading tolerant PV modules concepts of module layouts with more robust bypass diodes


Research Results

see L. Rendler et al. FhG ISE, "*Innovative Layouts* for Utility-Scale PV Modules", IEEE PVSC June 2023 e.g. 144 half cells, 12cells in a string, 4 bypass diodes

1. Introduction

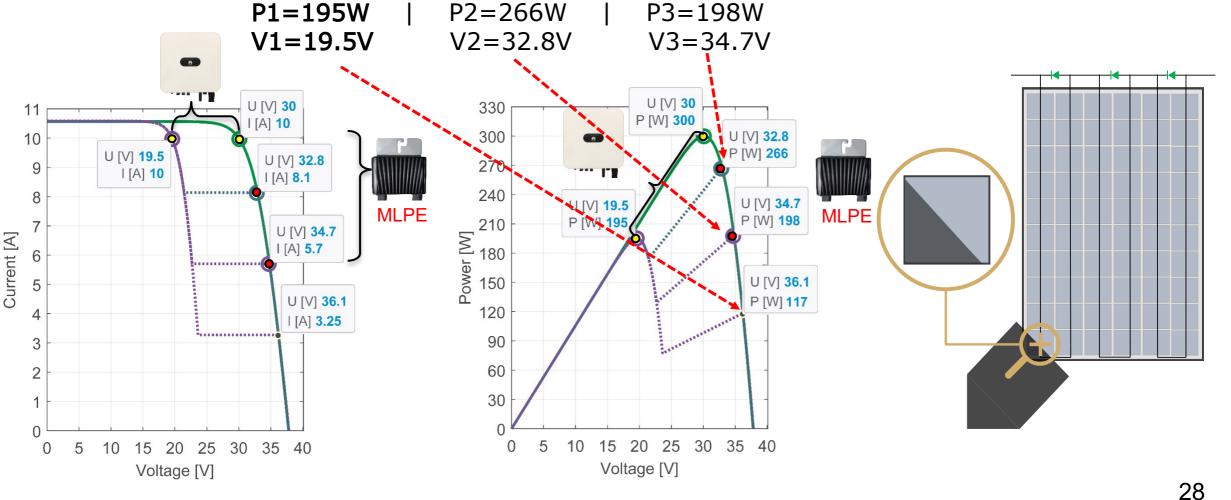

Products on the markets

Enhanced Shade Performance

Sub-strings are interconnected in parallel, dramatically lowering the shading losses and increasing energy yield. Solaria PowerXT solar panels had generated 63.8% more energy than Competitor 1 and 82.5% more energy than Competitor 2 over an actual 70-day outdoor test. Download our white paper to learn more.

See our Power In The Shade video.

Zurich University Appl. Sci. ZHAW, www.zhaw.ch/=bauf


F. Baumgartner

15.02.2024

2. Simulation + Indoor Measurement

3. Performance Results

Single cell shaded – 3 bypass diodes by 20% (MLPE benefical), 43% (equal), 66% (MLPE same to SINV)

C. Allenspach, F. Baumgartner, 2023-05-22, www.zhaw.ch/~bauf