Zentrales Regelungskonzept zum Engpassmanagement im Verteilnetz mittels gemischtganzzahliger nichtlinearer Optimierung

Manuel Schwenke M. Sc., David Nickel B. Sc. (Vortragender), Prof. Dr.-Ing. Jutta Hanson

Einführung

§

EnWG

Beteiligung von EZA ab 100 kW an Redispatch-Maßnahmen

Zentrale Kommunikation & Regelung

Zentrale Kommunikation und Datenaustausch mit EZA

Diskrete Stufen

Diskrete Regelstufen und Schalterpositionen

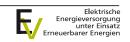
MINLP

Betrachtung von reell-wertigen und diskreten Variablen

Ergebnisse

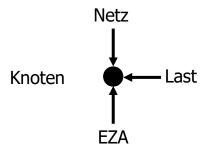
Fazit

Ergebnisse


Theoretische Grundlagen

Grundlagen der Optimierung

Allgemeine Form eines Optimierungsproblem	S:
Claichhaite und Unglaichhaitenahanhadingu	naoni
Gleichheits- und Ungleichheitsnebenbedingu	ngen:



Theoretische Grundlagen

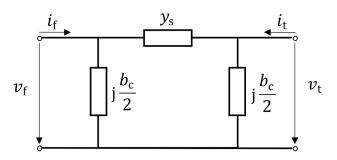
Nebenbedingungen der Lastflussoptimierung: Leistungsbilanz

Lastflussgleichungen Wirk- und Blindleistung im VZS:

Folie 6

Lastflüsse aus dem Netz:

Ergebnisse


Fazit

Theoretische Grundlagen

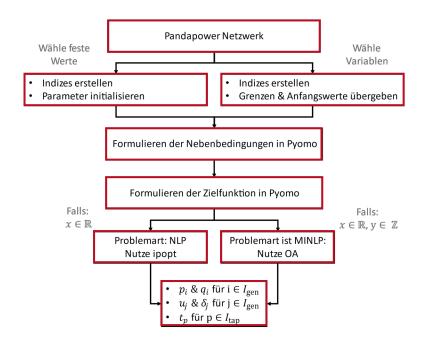
Nebenbedingungen der Lastflussoptimierung: Zweigflüsse

Leitungsauslastung allgemein:

Ergebnisse

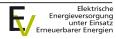
Ablauf: Wirk- und Blindleistungsregelung zur Vermeidung von Engpässen

Schnittstelle zwischen Pandapower und Pyomo



Pandapower:

- Bildet Datengrundlage
- Dient der Netzmodellierung
- OPF-Funktionalität nur für reellwertige Variablen
- Dient als Orientierung


Pyomo:

- Paket zur Lösung von Optimierungsproblemen
- Bietet Vielzahl von Lösungsmethoden
- Einfache Formulierung von Nebenbedingungen und Nutzung der Automatic differentiation zur Bildung von Gradienten- und Hesse-Matrizen

Ergebnisse

Fazit

Umsetzung einer diskreten Wirkleistungsregelung

Modellierung der diskreten Stufen als indexbasierte binäre Variable:

Zuordnung:

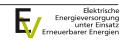
Nebenbedingung:

† †† Regelb**andia**ngen Knoten Nummer

Ergebnisse

Beispiel:

→ WKA auf 60 %

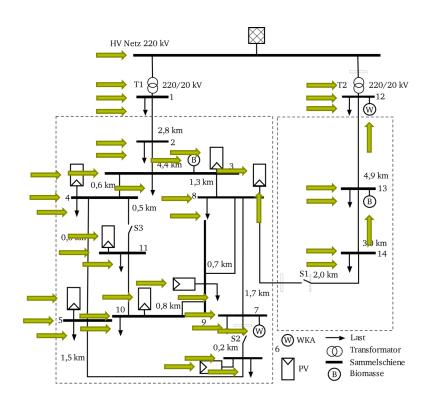

Transformatorstufenschalter

Komplexes Übersetzungsverhältnis:

Beeinflussung der Admittanzmatrix:

Lastflussgleichungen	Betriebsmittelauslastung	

Modifiziertes Cigré-Netzes



Anpassung:

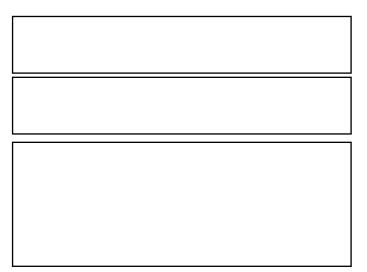
Süddeutsches Mittelspannungsnetz

Daten:

- 1 Slack
- 14 PQ
- 2 Transformatoren je 25 MVA
- 14 Lasten
- 29 EZA
 - ➤ 15 Anlagen Regelbar
 - ➤ 14 LV-Anlagen

Ergebnisse

Fazit



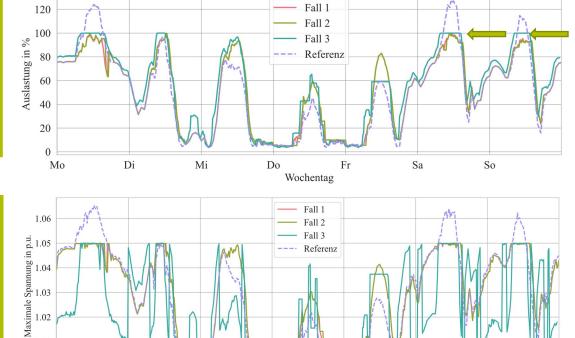
Optimierungsproblem

Zielfunktion & Nebenbedingung:

Lastflussgleichung

Zweigflüsse

Binäre Regelung


Definition der drei Fälle

1.01 1.00

Mo

Do

Wochentag

Fall

Fall 1	Variabel	konstant	
Fall 2	Variabel	Variabel	
Fall 3	Variabel	Variabel	VDE-AR-N 4110

Mi

Di

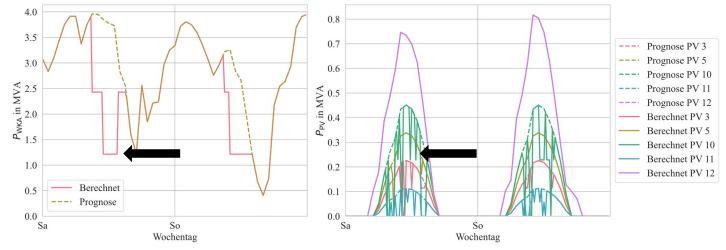
Sa

Fr

So

Fall 1

Wirkleistungsabregelung:


Gleichzeitige Einspeisung PV & Wind:

- WKA auf 30 % bzw. 60 % abgeregelt.
- PV wir häufiger abgeregelt.
 - Feinere Stufung durch PV-Anlagen mit kleinerer installierter Wirkleistung.

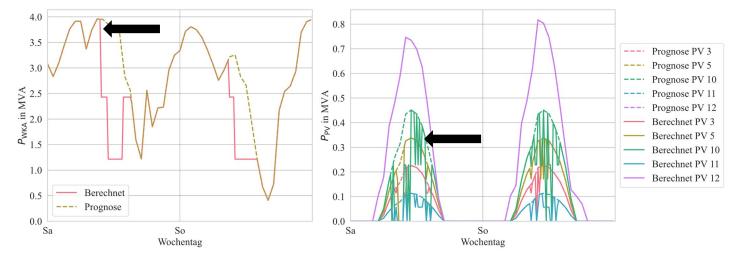
Fall

Fazit

Fall 1 variabel

Fall 2

Wirkleistungsabregelung:


Ähnliches Verhalten wie in Fall 1.

Stufenschalter:

Keine Schalthandlungen für diesen Fall.

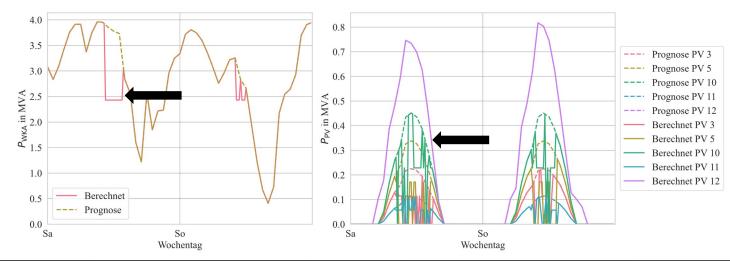
Fall

Fall 2 variabel variabel

Fazit

Fall 3

Wirkleistungsabregelung:

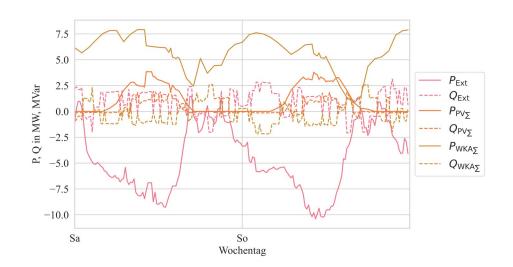

Gleichzeitige Einspeisung PV & Wind:

- WKA nur noch auf minimal 60 % abgeregelt (Fall 1 und Fall 2: min. 30 %!).
- PV wir häufiger und in kleineren Stufen abgeregelt.

→ Geringste Abregelung der betrachteten Fälle

Fall

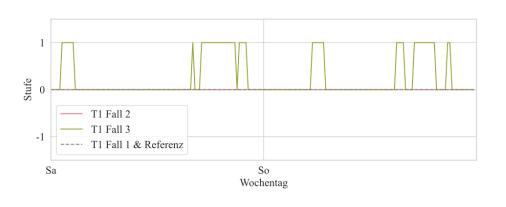
Fall 3 variabel variabel



Blindleistung und Transformatorstufenschalter

Blindleistungsverlauf:

- Senken der Betriebsspannung, um spannungsbedingte Engpässe vorzubeugen
- Erhöhen der Betriebsspannung, um strombedingte Engpässe vorzubeugen



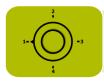
Transformatorstufenschalter:

- Position (+1) ohne Engpass
- Neutrale Position bei Engpass

Fazit

→ Begründung: Übersetzung wird verringert, um Spannung anzuheben und Ströme abzusenken.

Ergebnisse


Zusammenfassung

Schnittstelle Pandapower & Pyomo

Pandapower als Datengrundlage für Modellierung in Pyomo

Algorithmus zur diskreten Wirkleistungsregelung

Funktion über indexbasierte binäre Variablen

Untersuchung an Testnetz

Cigré-Netzes

Ergebnisse zeigen Funktionalität

Abregelung von EZA für verschiedene Fälle

Methode

Zukünftige Schritte

Vielen Dank für Ihre Aufmerksamkeit!

Für Fragen stehe ich gerne zur Verfügung!

David Nickel, B.Sc.

Technische Universität Darmstadt

Landgraf-Georg-Straße 4 64283 Darmstadt

E-Mail: david.nickel@hotmail.de

Internet: www.e5.tu-darmstadt.de