Methods for Assessing the Raw Material Requirements in Energy System Analyses

<u>Kai Schulze</u>*, Felix Kullmann, Jann M. Weinand, Detlef Stolten
*k.schulze@fz-juelich.de

18. Symposium Energieinnovation

Graz – 16.02.2024

IEK-3: Institute of Techno-economic Systems Analysis

Interest in the Energy-Material-Nexus Has Increased Over the Last Decade

DOI: 10.1016/j.energy.2019.05.156

Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications

DOI: 10.1016/j.apenergy.2018.05.047

Energy modeling approach to the global energy-mineral nexus:

of fuel cell vehicle

Ayman Elshkaki a, *,

Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy

Flagship report

ellan^c, Mikael Höök^d, Shinsuke Murakami^e, Rieko rial cycles into metal-energy nexus of China's

Koji Tokimatsu^{a,b,*}, Mikael Höök^c, Be<u>niamin McLellan^d Henrik Wachtmeister</u>^c Shinsuke Murakami^e, Rieko Yasuoka^f,

DOI: 10.1016/j.egypro.2017.12.167

Chen^v, Jian-Ping Ge^c, Wenjia Cai^d, Wei-Qiang Chen^{a,f,g,*}

The Role of Critical Minerals in Clean **Energy Transitions**

DOI: 10.1016/j.apenergy.2019.113612

Image from https://www.businessillustrator.com/ and International Energy Agency

Introduction to raw material assessment methods

Improve the Modelling and **Assessment of Raw Materials** in Energy System Models

Model-supported vs. model-based methods

Challenges of current assessment approaches

Best practice advice for future assessment

Icons by Design Circle, kerismaker, Mayor Icons and Freepik from https://www.flaticon.com/

Assessing the Raw Material Demand of Energy Systems Starts at the Technology Level

Two Main Methodologies for Assessing Raw Materials in Energy Systems Exist

- No model needed and easy to perform
- Energy system design is **not influenced** by the material demand assessment
- Use of models increases complexity but can enhance results significantly
- Material demand assessment influences model output (non-linear feedback)

Ex-post Analyses Dominate the Research Field

Material Flow Analysis Can Enhance the Quality of Ex-post Analysis

- MFA can be used to fill in data gaps
- MFA can **increase the informative value** of ex-post analyses

*Material Flow Analysis

Share of Model-supported Ex-post Analyses is Slowly Increasing

Integrating Material Assessment into Energy System Models Requires "Coupling-Methods"

Due to their high complexity, "Linking"-approaches are still rarely used

Current Assessment Approaches Face Multiple Challenges

Potential biases within the input data

Unrealistic Lifetimes

Insufficient scope

No technology development over time

Best-Practice Advice for the Raw Material Assessment of Energy Systems

- 1. Aim for a **model-supported** or **model-based** analysis approach
- Be as **detailed as possible** while **maintaining a systemic viewpoint**
 - Place national analyses into an **international context**
 - **Couple models** of different sectoral-scopes and levels of details
 - Account for material demands of remaining sectors especially for bottleneck analyses
- Avoid static input data, instead use time-dependent input data or learning curves
- **Extend the time-horizon** of your analysis beyond the average 40 years
- Always account for uncertainty within your input data
- Aim for interdisciplinary approaches
- 7. Comply with the **FAIR*** **principles**

