

ECONOMIC AND ENVIRONMENTAL ASSESSMENT OF CO₂ UTILIZATION FROM BIOMETHANE PRODUCTION

18. Symposium EnergieinnovationFrank Radosits, Amela Ajanovic, Reinhard Haas
TU Wien – Energy Economics Group (EEG)

Table of contents

- Motivation
- Research questions
- Methodology
 - Scenarios
 - Economic assessment
 - Environmental assessment
- Results
- Conclusions

Motivation

- EU depends on imports of natural gas: 80% imports
- Share of LNG increased from 20% in 2021 to 42% in 2023
- LNG leads to at least 15% higher emissions than conventional natural gas (Deutscher Bundestag 2023)
- Green gases are substitutes for natural gas (flexibility)
- Contribution to emission reduction
 - Industry
 - Transport

Source: Green Gas Brochure, www.MaREI.ie

Research aims

- Economic assessment
 - Production costs and cost reductions
 - Sensitivity analysis
- Environmental assessment
 - CO₂ mitigation potential in 2050

Methods

Methodology

- Direct methanation of biogas
- Costs for CO₂ separation can be omitted
- Investment costs increase

Scenarios

- Biomethane production at 2 MW and 5MW scales
 - Energy maize
 - Manure
 - Biowaste
- Enhanced biomethane production with hydrogen
 - Grid electricity
 - Hybrid energy model

→ Power demand total → Wind power → Photovoltaic power → Sum (Wind, PV)

adapted from Pratschner et al. 2023

Economic assessment

Production costs

= production k = capital recovery factor, = fixed operating cost [€/kW], = other capacity related cost, = biomass price, = k = k = k = energy efficiency, = variable cost [€/kWh], = reference price for scale k = k = scaling factor

Cost reductions

= investment costs of new components, = investment costs of conventional components, = investment costs of a unit at time t, = installed capacity at time t, = learning rate, b= parameter for the extent of learning measured

Radosits et al. 2024

Environmental assessment

- CO₂ mitigation potential of biomethane production in the EU
- Data from the ProBas database

Scenarios EU 2050

- Optimistic scenario: 91 bcm biomethane
- Medium scenario: 60 bcm biomethane
- Pessimistic scenario: 35 bcm biomethane

* Crops include energy crops, crop residues and sequential crops. Note: 1 Mtoe = 11.63 terawatt-hours (TWh) = 41.9 petajoules (PJ)

IEA 2020

Results

Production costs

Sensitivity analysis

Environmental analysis

BW=Biowaste, ATMix = Austrian electricity mix, LNG=Liquefied natural gas

CO₂ mitigation potential

Conclusions

- Hydrogen-enhanced biomethane production is an effective way of CO₂ utilization
- Production costs increased for the enhanced biomethane production
- Biomethane usage reduces the reliability on fossil fuel imports such as LNG and contributes to emission reduction
- The CO₂ mitigation potential can be increased compared to the reference
- Limitations
 - Uncertainties: Feedstock costs, developments in the transport sector, investment costs, etc.

Frank Radosits E-Mail: radosits@eeg.tuwien.ac.at

TU Wien Energy Economics Group –EEG Gußhausstraße25-29/E 370-3 1040 Vienna, Austria