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Abstract: This contribution assesses the operational potential of the charging infrastructure at 

the Freudenberg Campus of the University of Wuppertal in both grid-oriented and market-ori-

ented contexts, taking into account the Day-Ahead market. Genetic algorithms are employed 

to optimize the operation schedule. The optimisation considers the mathematical modelling of 

the charging processes and utilises a tool based on probabilistic methods to determine the 

standing times of electric vehicles. In the presented scenarios, the results prove the potential 

to reduce electricity costs. Moreover, in most cases, these algorithms fulfil the power-shifting 

requirements that may be requested by a Smart Grid system in the short term. 
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1 Introduction 

The electrification of the mobility sector is one of the implemented strategies to meet the chal-

lenges imposed by the climate change crisis. This initiative has significantly increased the total 

number of electric vehicles (EVs) in Germany from 84 thousand in 2018 to almost 620 thou-

sand by the end of 2022 [1]. The growth of the EV and Plug-in hybrid electric vehicles (PHEVs) 

fleet resulted in the development of public charging infrastructure (CI) and, consequently, 

charging points (CPs). The total number of CP increased from almost 20 thousand in 2018 to 

84 thousand in 2022, of which 17 % corresponded to fast CP [2]. This fact results in a potential 

simultaneous charging power demand of 2.8 GW [2], which could lead to critical operational 

conditions in the power grid. By managing the charging processes, it is possible to exploit the 

flexibilities of EVs and PHEVs. On the one hand, these flexibilities could have a grid-oriented 

character to support grid operation to mitigate potential grid bottlenecks, such as voltage limit 

violations and overloads [3]. On the other hand, in the absence of grid requirements, these 

flexibilities can be traded in suitable energy markets to enable a market-oriented operation to 

generate economic revenues [4].  

Determining the operating schedule of a CI that takes into account the two discussed modes 

of operation is not trivial. On the contrary, its optimisation must deal with the non-linearities 

present in the charging process models for EVs. It must also consider not only the technical 

characteristics of the EVs involved but also the constraints related to user comfort. In particular, 

the willingness and expectations that a user would have if the EV’s state of charge (SoC) is 
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affected by one of the operation modes. Therefore, Genetic Algorithms (GA) appear as an 

alternative to conventional optimisation methods as they can consider non-linear models and 

multiple constraints [5]. They can consider approaches to examine a wider range of potential 

solutions that are not intuitively easy to determine [6]. 

This contribution aims to determine the potential of the CI for EVs at the Freudenberg Campus 

of the University of Wuppertal to operate optimally considering energy markets and grid re-

quirements. For this purpose, this paper is divided into four additional sections. In "Conceptual 

framework", general relevant topics for this paper are introduced. In "Methodology" the general 

technical characteristics of the considered local CI are described; the used models and the 

way the optimiser works are also outlined; the scenarios are presented. In "Results and Anal-

ysis" the results of the market-oriented operation and the grid-oriented operation of the local 

CI are discussed for each scenario. Finally, "Conclusion and outlook" summarises the most 

relevant findings and the strengths and weaknesses of GA as an optimisation method for EVs. 

2 Conceptual framework 

2.1 Spot and Flexibility market 

Owners and operators of CI for EVs often pay for the electricity demanded through long-term 

contracts in the forward market. Such contracts are typically prevalent in, for example, non-

residential buildings [7]. For most cases, and under conventional energy market conditions, 

this can lead to higher operating costs compared to a flexible operation in the Spot Market. 

Furthermore, the end consumer should have the possibility to purchase electricity flexibly in 

the most suitable energy market. 

Otherwise, the end electricity consumer should have the possibility to purchase electricity flex-

ibly from wherever it is most profitable. The timeframe of the trading options in the Spot Market 

is highlighted in grey in Figure 1. The Day-Ahead and Intraday auctions and the Intraday trad-

ing belong to the Spot Market [8, 9]. The smallest tradable transaction in the Spot Market is 

0.1 MWh which may lead to aggregate users to be able to participate in it. 

 

Figure 1: Time frame conditions of the potential trading markets for CI for EVs 
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The retrofitting of conventional grids with modern information and communication technology 

to Smart Grids paves the way for introducing Smart Markets [10]. With the grid state infor-

mation from the Smart Grid system, the available grid capacity can be monitored and trans-

ferred to intelligent trading as an indirect offer. This concept is used in local Flexibility markets, 

where efficiency services such as the curtailment of controllable loads and energy manage-

ment are mapped by shifting energy flows over time as part of a smart market. 

In addition to the Spot Market and the Flexibility market, Peer-to-Peer (P2P) trading* appears 

to be a decentralised market option. Here, members of a distribution grid can trade more pre-

cise products, such as energy or flexibility, on a short-term basis. Trading volumes could also 

be less than 0.1 MWh. Thus, no aggregation is necessary. An example of such a market is 

considered in the PEAK research project [11]. Its timeframe is presented in Figure 1, but it can 

vary from one P2P market to another, as well as the type of products that are traded [11].  

2.2 Grid-oriented operation  

A Smart Grid system enables the grid-oriented operation of the CI. Since not all nodes are 

equipped with measurement devices, it uses methods of grid state estimation. These methods 

accurately determine the current grid’s status with limited information and detect critical condi-

tions that may compromise the grid operation [12, 13]. Once a bottleneck is detected, the Smart 

Grid system determines the operating points to be reached by grid members capable of con-

tributing to clearing the fault. Such operating points are transmitted to the involved participants 

in the form of a request for a change of operating power [14]. After clearing the bottleneck, the 

CI can return to a normal operating mode. 

2.3 Electric vehicle charging process models 

Conventional mathematical models aim to describe the charging process through the power 

demanded from the battery 𝑃(𝑡) and its respective state of charge 𝑆𝑜𝐶(𝑡). Given the charac-

teristics of lithium-ion batteries, which have a high energy and power density, it is common to 

find them nowadays in most EVs [15]. Their charging process generally occurs in two stages 

and they are separated by the switching point S* (from eq. 1). In the constant current (CC) 

stage, the battery voltage gradually increases until the maximum terminal voltage is reached. 

This is followed by the constant voltage (CV) stage which targets to keep the voltage value 

constant while the charging current is reduced exponentially until it falls below a predefined 

threshold value [16, 17].  

 

Figure 2: Effects of maximal charging power on power and SoC in a charging process 
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Figure 2 shows how different levels of maximum charging power (𝑃max) affect the charging 

process. The intervals where the charging power remains constant correspond to CC, while 

the exponential drop corresponds to CV. These curves were obtained through a tool imple-

mented in the framework of this research. This tool considers eq. 1, eq. 2 and eq. 3, which are 

the results of Fasthuber's research. These equations depend on the intrinsic parameters of the 

EV battery [17]. These parameters are: the maximum charging power 𝑃max, the maximum bat-

tery’s usable capacity 𝐸max, the cell battery’s nominal voltage 𝑈N, the cell battery’s maximum 

final charging voltage 𝑈LS and its final charging current 𝐼LS. 

 
𝑃(𝑡) = {

𝑃max                                     ,   𝑆𝑜𝐶(𝑡) < 𝑆∗

𝑃max ⋅ exp (
𝑆∗−𝑆𝑜𝐶(𝑡−1)

𝜏
) ,   𝑆𝑜𝐶(𝑡) ≥ 𝑆∗  (1) 

 𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡 − 1) +
𝑃(𝑡)⋅𝛥𝑡

𝐸max
  (2) 

 

𝜏 = (100 − 𝑆∗) [𝑙𝑛 (
𝑃max

𝑈LS
𝑈N

⋅𝐼LS⋅𝐸max

)]

−1

  (3) 

2.4 Standing times forecast for electric vehicles 

The methods for determining the standing times of EVs can be done in different ways. Today, 

the computational power of computers has enabled the widespread use of techniques such as 

machine learning, even in electromobility. Through machine learning, it is possible to forecast 

driving profiles [18], the occupancy of CPs [19, 20] and the power demand of a CI [21]. How-

ever, the forecast accuracy depends to a large extent on the quality of the data used to train 

the model [19]. On the other hand, conventional alternatives, such as those based on proba-

bilistic methods, seek to determine the mobility behaviour of EV users through electromobility 

studies. At the Institute of Power Systems Engineering, a tool to generate driving profiles was 

developed, and this tool has been able to support several research projects [22]. 

The tool generates driving profiles according to input variables such as date (weekday, week-

end day, holiday, etc.), CP amount and details of their charging power characteristics. The CI 

location (metropolis, urban area, rural area, etc.) plays also a decisive role and has also been 

considered. The model provides the EV’s standing times based on their SoC at the arrival time 

based on the probabilistic mobility behaviour. 

2.5 Optimisation of electric vehicle charging processes 

There are extensive research studies involving the optimisation of EV charging processes. 

Some of them take a deterministic approach (i.e. the outcome of the model is fully determined 

by the parameter values and the initial values) and seek to minimise operation costs and max-

imise ancillary service revenue [23]. Others consider a stochastic approach (i.e., involving ran-

dom variables and probabilities) to schedule the potential EV combined charging and discharg-

ing process in a microgrid, prioritising the use of renewable energies [24]. These stochastic 

processes have market-oriented applications to determine the Day-Ahead pricing to minimise 

the peak power demand [25]. Although these optimisation methods can converge quickly, in 

many cases they can only be applied for small-sized problems where the number of constraints 

is reduced and multiple optimisation objectives are not considered. Usually, in these cases, 

the processes involved have a linear behaviour [24]. 
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Apart from the conventional optimisation methods hereby presented, there are other methods 

based on the natural evolutionary process. Among these, Genetic Algorithms (GA) are primar-

ily used to solve complex optimisation problems. Their metaheuristic character (i.e., they adapt 

independently of the objective or the search field) enables them to offer great flexibility in con-

sidering multi-objective functions and can consider several constraints. These optimisation 

methods start from an initial random population of individuals. Throughout iterations (or gen-

erations) they recombine and mutate to improve the population of suitable candidates, via fit-

ness assessment, in order to solve the optimisation problem. Figure 3 shows the general GA’s 

workflow. In each iteration, it is possible to explore beyond the search field so far considered, 

providing the GAs insight to avoid local minima or maxima, without being immune to falling into 

them. [5, 6] 

                         

Figure 3: Conventional flowchart of a GA 

3 Methodology 

This section describes the methodology used to optimise the charging processes of the local 

CI in a market-oriented and grid-oriented approach.  This section also describes the scenarios 

considered for the analysis. 

3.1 Description of the local charging infrastructure 

The Smart Grid Laboratory (SGL) is located at the Freudenberg Campus of the University of 

Wuppertal. A low-voltage Test Grid was conceived and implemented there, in which different 

devices are used to emulate realistic scenarios that can occur in the power distribution grid 

[26]. In addition to frequency inverters (FI), resistive loads (RL), a photovoltaic (PV) system, 

and a structure capable of considering multiple grid topologies, it also has a CI for EVs. The 

CI can simultaneously deliver up to 176 kW through its six charging stations, two of which have 

two CPs, while the rest have one. Figure 1 illustrates generally the described hardware. It is 
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worth highlighting that the charging stations that have two CPs do not allow the regulation of 

the charging processes. Given this limitation, these CPs are not regulated in the optimisation. 

  
a) Hardware layout in the low voltage Test Grid of the SGL b) Schematic representation of the CI 

Figure 4: Local CI at Freudenberg Campus of the University of Wuppertal 

3.2 Validation of the charging process model 

By monitoring the charging processes of some EVs charged via the local CI, the measure-

ments are used to identify the corresponding parameters of the implemented model for EV 

charging processes presented in section 2.3. These are summarised for specific EVs and 

shown in Table 1.  

Table 1: EVs' relevant model parameters 

EV 𝑷𝐦𝐚𝐱 in kW 𝑼𝑵 in V 𝑼𝑳𝑺 in V 𝑬𝐦𝐚𝐱 in kWh 𝑰𝑳𝑺 (C-rate) in 1/h [17] 

Skoda E-Citigo 7.6 

3.6 4.2 

36.8 0.123 

BMW-i3 7.6 37.9 0.025 

VW E-Golf 3.5 32 0.026 

Renault-Zoe 20.1 22 0.123 

A comparison between measurements (𝑥) and the simulation (𝑥) of a charging process is pre-

sented in Figure 5a). The stepwise behaviour of the power measured is an effect of the EV’s 

charging strategy. The charging management systems may differ, but the general process can 

be reproduced by the model. 

  
a) Renault-Zoe’s model validation  b) RMSE and MAPE indicators for different EVs 

Figure 5: Validation results for different EV charging process models 

In Figure 5b, typical indicators such as Root Mean Squared Error (RMSE) (eq. 4) and Mean 

Absolute Percentage Error (MAPE) (eq. 5) are used to compare the model’s performance for 

the considered EVs.  
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RMSE = √

1

𝑛
∑ (𝑥i − 𝑥i)

2𝑛
𝑖=1     (4) 

 MAPE =
1

𝑛
∑ |

𝑥i−�̂�i

𝑥i
|𝑛

𝑖=1   (5) 

The presented model has however potential for improvement especially when the maximum 

charging power approaches the maximum technical operating power of the CP. 

3.3 Optimisation model for EV charging processes through Genetic Algorithms  

An insight into the developed genetic algorithm for market-oriented optimisation and grid-ori-

ented optimisation for given scenarios is presented in this section. For this purpose, the opti-

misation objective functions are defined and the GA parameters with which the algorithm works 

are listed. Finally, the calibration process of the GA parameters is presented. 

3.3.1 Optimization problems: Objective functions definition 

The implemented genetic algorithm operates in two stages: one schedules the CI operation up 

to twelve hours in advance, and the other seeks to adjust it within a narrow time horizon to 

meet a requirement identified and requested by a Smart Grid system. For both cases, the 

genetic algorithm seeks to find the fittest individual that satisfies the governing mode of oper-

ation. In this context, an individual of a generation has the information of the set points for the 

maximum charging power 𝑃max for every CP in each time block throughout the day. With each 

iteration, a new generation is created and every generation undergoes fitness assessment, 

individual selection, crossover and mutation. 

For the optimised definition of the schedule of the market-oriented operation (𝑚𝑜), the objec-

tive function of eq. 6 is used. This aims to shift the CP’s demanded power (𝑃𝑚𝑜) to the times 

of the day (𝑖) when the Day-Ahead prices (𝑘) are most profitable. This is done from the first 

time block to the last time block of the day (𝑁) by considering the charging processes at the 

controllable charging points (𝑐𝑐𝑝). Finally, the demanded electricity price is obtained by con-

sidering the simulation time step (𝛥𝑛), which is 15 minutes. The result of the optimisation is the 

operation schedule with the maximum charging power (𝑃𝑚𝑎𝑥) setpoints for each time slot for 

each CP in the CI, which minimises the operating costs for the next day. 

 
𝐺𝐴mo = min ∑ ∑ {𝑃𝑗

𝑚𝑜(𝑖) ⋅ 𝛥𝑛 ⋅ 𝑘(𝑖)}
𝑐𝑐𝑝

𝑗=1

𝑁

𝑖=1
 (6) 

Once the above schedule starts running, the grid-oriented optimisation (𝑔𝑜) takes place. The 

control and monitoring system of the CI is aware of possible requests from a Smart Grid sys-

tem. If there were no requirements, the market-oriented schedule would be executed. Such 

requests are commands to reduce or increase the load power (𝛥𝑃𝑔𝑜) for the next time block. 

In the event of a request, the optimiser uses the objective function presented in eq. 7. It aims 

to minimise the differences between the market-oriented schedule (𝑃𝑚𝑜), which includes the 

request of the Smart Grid system 𝛥𝑃𝑔𝑜 at the needed moment (𝑖𝑔𝑜), and the new grid-oriented 

schedule (𝑃𝑔𝑜). Eq. 7 seeks not only to satisfy the Smart Grid system’s requirement but also 

to minimise the potential variations between both schedules. This prevents possible penalties 

or additional costs due to non-compliance with the original schedule.  
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𝐺𝐴go = min ∑ |{∑ [𝑃𝑗

𝑚𝑜(𝑖) + 𝛥𝑃𝑔𝑜(𝑖 = 𝑖𝑔𝑜)]
𝐶𝑃

𝑗=1
⋅ 𝛥𝑛} − 𝑃𝑗

𝑔𝑜(𝑖) ⋅ 𝛥𝑛|
𝑁

𝑖=𝑖𝑔𝑜

 

subject to: 

SoC𝑗 ≥ SoCmin  

(7) 

The objective function also takes into account the user's willingness to have a smaller SoC 

value than expected through a minimum SoC (SoCmin) condition to be satisfied. The grid-ori-

ented operation may affect the expected SoC value at the time when the EV leaves the CP.  

In case variations persist between the market-oriented schedule and the grid-oriented sched-

ule, they can be traded in intraday trading, in Flexibility markets or in P2P markets [27]. How-

ever, redispatch is not the focus of this paper. 

3.3.2 Parameter optimisation of the Genetic Algorithm 

GA-optimisation considers multiple parameters which must be calibrated to accelerate the con-

vergence of the optimisation model [28]. Furthermore, the search field that the optimiser may 

consider can significantly affect the quality of the results obtained. In general, the parameters 

considered in the framework of this contribution are: 

• nIt: Maximum number of iterations (generations)  

• Pop: Size of the population of candidate solutions of each generation 

• pCh: Offspring rate as a proportion of population size 

• ParSel: Parent selection criteria 

• beta: Pressure factor for the selection of suitable individuals 

• CrossMod: Crossover mode 

• gamma: Crossover’s exploration factor for new potential solutions 

• mu: Mutation factor  

• sigma: Mutation step size 

• zeta: Damping factor of the mutation factor after each generation 

The parameters involved in “Individuals selection” phase of Figure 3 are ParSel and beta. 

Those belonging to the "Crossover" phase are CrossMod and gamma. Lastly, the parameters 

that impact “Offspring mutation” are mu, sigma and zeta. 

A Monte Carlo analysis is performed to determine the values of the GA parameters that provide 

the fastest solution for both optimisation problems. The solution of the optimisation problem 

considered to calibrate the GA parameters is known beforehand. This analysis iteratively 

sweeps the values of the following GA parameters within a given range: Pop, pCh, beta, 

gamma, mu, and sigma. The same seed was used throughout the random number generator 

to ensure reproducibility and thus to understand the effects of parameter variation on the re-

sults and the speed with which results are obtained. 

The GA parameters that remain constant during the parameter calibration are [29]: 

• nIt: set to 6 to force fast convergence 

• ParSel: usually roulette wheel 

• RecMod: usually uniform distribution 
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• zeta: usually 0.99 

As control variables for the GA-parameter calibration are considered: 

• Sim ID: Unique simulation ID for a generation's individual 

• Costs: Total operational costs (fitness assessment value of the individual) 

The objective of the GA-parameter optimisation is to find the fastest individual to emerge that 

generates the most cost-effective results. This is achieved through the smallest Sim ID num-

ber, as this parameter increases by one each time the assessment of an individual is com-

pleted. After almost 20 hours of evaluating 1750 generations (iterations), which corresponds 

to more than 320 thousand individuals, the set of parameters that obtained the fastest solution 

is chosen through the control variables. A GA-parameter optimisation overview is presented in 

Figure 6. The concentration of information in the upper left part of Figure 6a) is due to several 

factors. Not only does the number of possible parameter combinations influence this result, 

but also the unit increment of the control variable SimID, along with the unique Cost variable 

for each iteration. The Costs variable measures the quality of each iteration, with lower values 

indicating better fitness. 

  
a) Normalised GA -parameter optimisation chart b) Optimised GA-parameter values 

Figure 6: GA-Parameter optimisation overview 

3.4 Scenario description 

3.4.1 Market-oriented scenario 

The scenario selection is based on the analysis of the energy generation type in Germany in 

2022. This is to ascertain the daily generation of renewable energies for each season [30]. 

This information enables the selection of representative days by analysing the quartile data of 

the seasons presented in Figure 7a). The resulting representative days are those around the 

25th percentile (1st quartile) for low renewable energy contribution and the 75th percentile 

(3rd quartile) for high renewable energy contribution. The Day-Ahead prices of these days [31] 

are extracted exemplary and presented for the winter season in Figure 7b). 

These electricity prices are used as input variables in the market-based optimisation. Based 

on the probabilistic standing time forecasts for EVs from the tool presented in section 2.4 and 

the models of the EV involved, the market-oriented GA optimisation is performed. 

Two additional operation modes are considered to highlight the advantages of an optimised 

operation. The first one considers the dynamic prices of the Day-Ahead market while the CI’s 

operation is not optimised. It is assumed that for the spot-market-depending operation modes, 
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the CI can participate directly or indirectly (via an aggregator) in the energy markets. The sec-

ond operation mode considers a fixed electricity tariff for commercial customers, whose aver-

age value for the first half of the year 2022 was 0.2658 €/kWh and 0.5066 €/kWh for the other 

half [32]. The presented tariffs do not include the following additional costs: renewable energy 

fees, network charges, taxes and other levies. It also does not include administrative and man-

agement costs resulting from the operation through aggregation. 

  
a) Daily energy production in Germany from renewa-

ble energies by season  

b) Prices for the Day-Ahead market for the winter sea-

son 2022 considering the quartile distribution of a)  

Figure 7: Market-oriented optimisation day selection criteria [30, 31] 

3.4.2 Grid-oriented scenario 

After determining the CI’s operation schedule taking into consideration the Day-Ahead market 

prices, determined time blocks are selected. In these time blocks the CI must meet the require-

ments set by a Smart Grid system, in which the power demanded must be reduced during a 

15-minute time slot (e.g., a 50 % reduction of the power demanded between 10:00 and 10:15) 

while the bottleneck is cleared. On the one hand, it must be taken into account that grid-ori-

ented operation may lead to differences between the original market-oriented operation plan. 

On the other hand, the reduction of the charging power may reduce the EV’s SoC once it 

leaves the CP affecting the user's comfort. For this reason, minimum SoC requirements that 

the EV must meet at the time of departure from the CP are included in the optimisation condi-

tions. The minimum SoC value for the charging EVs at the time of leaving the CP must be at 

least 85 %. This scenario is only considered for the 5th of January 2022.  

4 Results and analysis 

This section presents the results and the corresponding discussions of the market-oriented 

and the grid-oriented optimisation, considering the presented scenarios. 

4.1 Market-oriented optimisation results  

Exemplarily, Figure 8  shows the results for 5 January of the GA-optimised schedule (marked 

in green and named GA) and the non-optimised operation schedule (marked in purple and 

named Dx), which operates, as does GA, considering dynamic electricity tariffs from the Day-

Ahead market on the 5th of January 2022. The main difference between the two modes of 

operation is that GA uses dynamic values of the maximum charging power at each time block, 

while the Dx mode of operation uses the maximum operative charging power of the CP, taking 

into consideration the Day-Ahead market as well. As shown in Figure 8, the GA aims to avoid 
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demanding power during time blocks where electricity costs are high. An example of this can 

be evidenced in the time slot between 15:00 and 20:00 when the GA avoids charging at max-

imum power and shifts consumption to the time slot between 20:00 and 24:00. 

 

Figure 8: Market-oriented optimisation results for the scenario “Winter – P75: 05.01.”  

A summarised overview of the electricity costs associated with the modes of operation just 

presented (GA and Dx), as well as the cost of the mode of operation that considers fixed elec-

tricity tariffs (Fx) are presented in Figure 9 for all scenarios considered. 

 

Figure 9: Overall market-oriented results by scenario 

Figure 10 shows a comparison between the economic saving potential that the GA-based op-

eration mode can offer compared to the other modes. On the one hand, compared to the Dx 

operation mode, the GA-based optimised operation is between 6.3 % and 8 % more cost-ef-

fective for the selected days. This is because GA aims to shift the demanded power to times 

when the electricity price is most profitable, as previously discussed. 

On the other hand, without considering the "Winter - P75: 05.01." scenario, GA offers for the 

other scenarios an economic savings potential between 23 % and 30 % compared to the Fx 

operation. For the scenario "Winter - P75: 05.01.", it offers a savings potential of 63 %. Given 

that the contribution of renewable energies in electricity generation for the analysed day cor-

responds to the third quartile of 2022, the average cost of electricity is expected to be low 

compared to other days. 
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Figure 10: Saving potential between the GA market-oriented operation and the other considered operation modes 

Figure 11 shows the average electricity price in the Day-Ahead market for that day is 0.11 

€/kWh. This price is not only lower than the first quartile of the daily average price distribution 

for winter but for the entire year. This translates into a higher savings potential than the other 

considered scenarios, given the fixed energy tariffs presented in 3.4.1.  

 

Day 

Daily average electricity 

price in the Day-Ahead 

market in €/kWh 

05.01. 0.11 

06.01. 0.22 

27.07 0.42 

02.12 0.34 
 

a) Seasonal analysis b) Daily average prices for given days 

Figure 11: Daily average electricity price on the Day-Ahead market in 2022 

Finally, at least for the selected days, there seems to be a close relationship between the days 

of high and low contribution of renewable energies in electricity generation and the electricity 

tariff in the Day-Ahead market. 

4.2 Grid-service-oriented optimisation results  

Figure 12 exemplifies the results of grid-oriented optimization for January 5, 2022. The green 

line represents the results of market-oriented (𝐺mo) as shown previously in Figure 8. Before 

the peak demand period in the afternoon, occurring between 14:45 and 15:00, a request (𝛥𝑃𝑔𝑜) 

is received from a Smart Grid system to reduce the demanded power by 10 kW during that 

time block. This request is highlighted in red and may have been triggered by a bottleneck in 

areas adjacent to the electricity distribution grid to which the CI belongs. The grid-oriented 

optimisation determines the new 𝑃max setpoints for each CP to meet this requirement while 

simultaneously ensuring a value at the time of leaving the CP of at least 85 % thereafter. The 

grid-oriented optimised schedule of the entire CI (𝐺go) is represented by the blue line.  
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Figure 12: Results of grid-oriented optimization in response to a 10-kW power reduction request on January 5, 2022 

The grid-oriented operation can introduce subtle variations in the power demand of the CI 

compared to the original market-oriented schedule, while still meeting grid requirements. The 

areas marked in yellow from 14:45 onwards represent these aforementioned variations, coin-

ciding with the time when the grid-oriented optimization scheduling is active (region marked in 

light grey). As presented in Figure 12, the 10-kW reduction request is addressed by 96.6 %. 

Figure 13 presents the results of the power deviation between the grid-oriented optimisation 

𝑃dev and the target set by the Smart Grid system. It also shows the deviation between the 

demanded energy 𝐸dev by operation mode 𝐺𝐴mo and operation mode 𝐺𝐴go. This percentage 

value provides insights into the energy that may need to be re-traded in short-term energy 

markets, such as Intraday trading [27], Flexibility markets or even P2P. However, this is not 

considered in the scope of this contribution. 

 

Figure 13: Power and energy deviation overview of the grid-oriented operation with respect to the market-oriented 

operation considering the power request of the Smart Grid system 

The two selected time blocks for grid-oriented operation align with the peak power demand of 

the CI during the day—one in the morning and the other in the afternoon. In each time block, 

two requests are initiated to assess the potential flexibility that the associated charging pro-

cesses can provide at those specific moments. During the morning time block, the grid-oriented 

optimization not only achieves accurate matching of setpoints, enabling a demand reduction 

of 10 kW and 20 kW with an accuracy exceeding 99 % for both cases. Simultaneously, the 

grid-oriented optimisation provides small variations concerning the original market-oriented 
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operating schedule. For the 20-kW request in the afternoon time block, the involved charging 

processes exhibited limited flexibility. Within the considered iterations, it was challenging to 

determine setpoint values that would guarantee the EVs would leave the CP with the defined 

minimum SoC value. 

5 Conclusion and outlook  

Operating in the considered scenarios, the CI at the Freudenberg Campus of the University of 

Wuppertal demonstrates the potential for both market-oriented and grid-oriented operations. 

According to the results obtained, participating in the Day-Ahead market and employing me-

taheuristic optimization methods —specifically, Genetic Algorithms— can effectively reduce 

electricity-related costs. On one hand, an optimised market-oriented operation proves to be 

20 % to 30 % more cost-efficient than an operation with a fixed electricity tariff. It is worth noting 

that the savings potential could have been higher, as only half of the load points were control-

lable. On the other hand, comparing the operation of the CI when using the dynamic electricity 

tariffs of the Day-Ahead market against its operation considering the GA-based operation, the 

optimised schedule still offers a saving potential of about 6 % to 8 %. 

The grid-oriented operation was successful in almost all considered cases. In three of the dis-

cussed scenarios, the Smart Grid system’s requirements were met by more than 96 %, ensur-

ing that the resulting schedule did not significantly deviate from the original schedule of the 

market-oriented operation. However, in instances where user comfort must not be compro-

mised, meeting Smart Grid system requirements may prove challenging. This was evident in 

the scenario on the right in Figure 13, where the charging process had to ensure that the EV 

could leave the CP with a minimum SoC value. 

Given that the optimization processes heavily rely on the quality of the EVs' standing time 

forecasts, employing a machine-learning-based model instead of a probabilistic-based one 

could enhance the CI's scheduling. Additionally, for future work, a scheme to determine the 

price of electrical energy that can be sold in short-term markets, resulting from variations be-

tween market-oriented schedules and grid-oriented schedules, can be considered. 
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