
18. Symposium Energieinnovation, 14.-16.02.2024, Graz/Austria  

   

Seite 1 von 10 

AI-Powered Predictions for Electricity Load in 
Prosumer Communities1 

Aleksei KYCHKIN2, Georgios CHASPARIS3 

2 Softwarepark 32a, A-4232 Hagenberg, Tel: +43 50 343 813, Email: 
aleksei.kychkin@scch.at, Web: http://www.scch.at  

3 Softwarepark 32a, A-4232 Hagenberg, Tel: +43 50 343 857, Email: 
georgios.chasparis@scch.at, Web: http://www.scch.at 

 

Abstract: The flexibility in electricity consumption and production in communities of residential 

buildings, including those with renewable energy sources and energy storage (a.k.a., 

prosumers), can effectively be utilized through the advancement of short-term demand 

response mechanisms. It is known that flexibility can further be increased if demand response 

is performed at the level of communities of prosumers, since aggregated groups can better 

coordinate electricity consumption. However, the effectiveness of such short-term optimization 

is highly dependent on the accuracy of electricity load forecasts both for each building as well 

as for the whole community. Structural variations in the electricity load profile can be 

associated with different exogenous factors, such as weather conditions, calendar information 

and day of the week, as well as user behavior. In this paper, we review a wide range of 

electricity load forecasting techniques, that can provide significant assistance in optimizing 

load consumption in prosumer communities. We present and test artificial intelligence (AI) 

powered short-term load forecasting methodologies that operate with black-box time series 

models, such as Facebook's Prophet and Long Short-term Memory (LSTM) models; season-

based SARIMA and smoothing Holt-Winters models; and empirical regression-based models 

that utilize domain knowledge. The integration of weather forecasts into data-driven time series 

forecasts is also tested. Results show that the combination of persistent and regression terms 

(adapted to the load forecasting task) achieves the best forecast accuracy. 

Keywords: Short-Term Load Forecasting, Microgrids, Persistence Models, Autoregressive 

Models, Seasonal Persistence-based Regressive Models, Facebook's Prophet Model, LSTM 

Model 

1 Introduction 

The current state of the art in Smart Building technologies provides several opportunities for 

efficient use of electricity. This can be attained through different forms of demand response, 

where residential buildings can properly schedule their flexible loads to reduce electricity costs. 

However, such demand response mechanisms usually require accurate forecasts of the 

electricity load consumption either at individual buildings or at communities of buildings. 

 
1 This contribution was made possible through the research project Serve-U, FFG #881164. The research reported in this paper 

has been partly funded by the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and 

Technology (BMK), the Federal Ministry for Digital and Economic Affairs (BMDW), and the State of Upper Austria in the frame 

of SCCH, a center in the COMET - Competence Centers for Excellent Technologies Program managed by Austrian Research 

Promotion Agency FFG. 
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However, generating accurate day-ahead forecasts for electricity loads in residential buildings 

is a rather challenging task due to the stochastic behavior of the users, as well as the variability 

in the electrical equipment used in each building. Using black-box machine learning models, 

including recently developed deep-learning architectures may not necessarily provide accurate 

forecasts in all cases, while the computational and configuration complexity of such models 

may be prohibitive. To this end, this paper provides a comparative analysis of several 

variations of deep-learning-based (AI-powered) methodologies and simpler modeling 

techniques that better incorporate domain expertise as recently introduced by the authors in 

[1,2].  

The proposed methodologies for day-ahead electricity load forecasting are building upon 

recent articles of the authors [1,2]. They are extended here by a) providing a comparative 

analysis of several variations of modern deep-learning-based machine learning models, and 

b) investigating the impact of weather forecasts on improving electricity load forecasts.  

2 Methodological Approach 

Measurements of the electricity load over a period of several months are sufficient to establish 

reliable day-ahead forecast models, where forecasts of the electricity load are provided over 

the following day (i.e., 24 hours as a sequence of 96 samples with 15-min granularity over the 

following day). Measurements were collected from three residential buildings in the state of 

Upper Austria. In addition, an artificial community has been established by also considering 

the aggregated sum of the electricity load consumption as a predicted target variable. In this 

work, we provide a comparative analysis of deep-learning-based (AI-powered) forecasting 

models with a collection of simpler forecasting models, namely persistence models, auto-

regressive based models, and their combinations. 

Facebook`s Prophet model [3,4] and LSTM model [5,6] constitute modern deep-learning 

architectures that can be used to establish predictions based on average load consumption 

through sampling of similar sequences in the past. In a way, this resembles the persistence 

models N-days and N-same-days introduced in [1,2], where the predicted load for a future time 

interval is generated based on the load at similar time intervals in previous days. Alternative 

machine learning models that can be used for forecasting also includes the Holt-Winters (HW) 

and SARIMA models that provide multi-step forecasting via smoothing, season, and trend 

decomposition. Furthermore, the persistence-based regression models, namely the 

persistence-based autoregressive model (PAR) and the seasonal persistence-based 

regressive models (SPR, SPNN) have been introduced by the authors in [1] and combine 

persistence factors with auto-regressive and domain-specific features. In SPR and SPNN 

models, we expanded the set of features to capture phenomena that are specifically relevant 

to electricity load consumption in residential buildings (such as, maximum energy consumption 

over one day). Furthermore, using PAR as a basis model, we also introduced additional 

features capturing the weather conditions (which are also provided as forecasts), namely the 

solar radiation and outdoor temperature, which formulated the PAR-W model. A more detailed 

description of the short-term load forecasting models used is provided below. 
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2.1 Persistence Models 

Persistence models constitute computationally efficient forecasting models that can be used 

for baseline load predictions. In many cases it is useful to know whether the developed 

forecasting model can give better forecasts than such simple baseline models. The paper 

considers persistence model using N last days of the same day of the week. For example, if it 

is necessary to forecast the load for the next day, and this day is Monday, then the forecast 

will be equal to the average load at the same time interval for the previous N Mondays. The 

abbreviation N-same-days is used to denote these models. The formal definition will be as 

follows. Let 𝑦𝑑(𝑡) be the load at time 𝑡 on day 𝑑. The persistence model (PM) considering 𝑁 

previous weekdays assumes that: 

ŷ𝑑
𝑃𝑀(𝑡) =  

1

𝑁
∑ 𝑦𝑖(𝑡)

𝑑−7

𝑖=𝑑−7𝑁

. 

Since the electricity load is highly dependent on the users' actions (i.e., their energy use 

schedules) in the recent past, it is possible to further improve the persistence model by 

considering a sequence of 𝑁 days. This model is denoted as the N-days model. According to 

this model, the forecast is generated as follows: 

ŷ𝑑
𝑃𝑀(𝑡) =  

1

𝑁
∑ 𝑦𝑖(𝑡)

𝑑−1

𝑖=𝑑−𝑁

.  

2.2 Machine Learning Models for Smoothing, Season, and Trend 

Decomposition 

2.2.1 Triple Exponential Smoothing on Holt-Winters Model 

The Holt-Winters model is designed to identify the trend and seasonality in time series data. 

The seasonal component of the model explains the recurring fluctuations and is described by 

the season length, i.e., the period after which the fluctuations begin to repeat. For each 

observation during the season, its own seasonal component is formed. 

In particular, the estimate of the future value of 𝑦 at time 𝑡 according to the Holt-Winters model 

is formed as follows: 

ŷ𝑑
𝐻𝑊(𝑡) =  𝐿(𝑡 − 𝑘) + 𝑘𝑃(𝑡 − 𝑘) + 𝑆(𝑡 − 𝑇) 

where 𝐿(𝑡) is the level component, which is given by: 

𝐿(𝑡) =  𝛼(𝑦(𝑡) − 𝑆(𝑡 − 𝑇)) + (1 − 𝛼)(𝐿(𝑡 − 1) + 𝑃(𝑡 − 1)) 

𝑃(𝑡) is the trend component, which is given by: 

𝑃(𝑡) =  𝛽(𝐿(𝑡) − 𝐿(𝑡 − 1)) + (1 − 𝛽)𝑃(𝑡 − 1) 

𝑆(𝑡) is the seasonal component, which is given by the formula: 

𝑆(𝑡) =  𝛾(𝑦(𝑡) − 𝐿(𝑡)) + (1 − 𝛾)𝑆(𝑡 − 𝑇) 

where 𝑘 is the prediction range 𝑘 = 96, 𝑦(𝑡) is the actual value of electricity load at time 𝑡, 𝑇 is 

the time series period, 𝛼 is the data smoothing factor, 𝛽 is the trend smoothing factor, and 𝛾 is 
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the seasonal smoothing factor. Also, 𝛼, 𝛽, 𝛾 ∈ (0,1). In the case of sequential forecasting, 𝑦(𝑡) 

is replaced by the corresponding forecast at the same time. 

2.2.2 Seasonal Autoregressive Integrated Moving Average Model (SARIMA) 

As a variation of the ARIMA model, the SARIMA model, can be used to track the seasonal 

component of a time series. In this model, parameters (𝑝, 𝑑, 𝑞) are considered as non-seasonal 

parameters and remain the same as in the previous model. These three parameters together 

account for seasonality, trend, and noise in the data sets. Specifically,  

• 𝑝 is the order of autoregression, which allows previous values of the time series to be 

considered,  

• 𝑑 is the order of integration, which allows previous differences of the time series to be 

considered, 

• 𝑞 is the moving average order, which allows the model error to be specified as a linear 

combination of previously observed error values. 

In addition to these parameters, parameters (𝑃, 𝐷, 𝑄) are applied to the seasonal component 

of the time series. In addition, a parameter 𝑆 is added to describe the season length of the time 

series (that is 96 if the season corresponds to one day, 7 × 96 if the season corresponds to 

one week, etc., with 96 being the number of sensor measurements taken within one day). Like 

the Holt-Winters model, the SARIMA model is a machine learning model that takes into 

account the seasonality of the series, indicated by 𝑆. The parameters (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑆 were 

selected by using the Akaike Information Criterion (AIC) and finally fitted as: (1,1,1)(1,1,1)96. 

2.3 Persistence-based Regression Models 

2.3.1 Persistence-based Autoregressive Model (PAR) 

Persistence models can detect low-frequency temporal dependencies in the load profile 

(dependencies occurring over several days or weeks), while autoregressive models can 

capture high-frequency temporal dependencies (occurring over one calendar day). In 

references [1,2], we introduced the Persistence-based Autoregressive Model (PAR) that tries 

to capture the optimal combination of these two types of models. In PAR, the estimated load 

is defined as 

ŷ𝑑
𝑃𝐴𝑅(𝑡|𝑎1, … , 𝑎𝑛, 𝑏0) =  𝑎1ŷ𝑑

𝐴𝑅(𝑡 − 1) + ⋯ + 𝑎1ŷ𝑑
𝐴𝑅(𝑡 − 𝑛) + 𝑏0ŷ𝑑

𝑃𝑀(𝑡) 

In this case, it is necessary to calculate the set of weights 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏0, corresponding to the 

optimal combination of high-frequency temporal dependencies (captured by the 

autoregressive terms) and low-frequency temporal or seasonal dependencies (captured by the 

persistence terms). 

2.3.2 Persistence-based Autoregressive Model with Weather Data (PAR-W) 

An extension of the PAR model also incorporates the weather forecasts. The model retains 

the benefits of PAR, namely the ability to capture low-frequency changes in the load (i.e., 

dependencies occurring over several days or weeks) and high-frequency changes (i.e., 

occurring over one calendar day). It also captures the influence of weather, in particular the 
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solar radiation, to the electricity consumption. The new model, briefly PAR-W, can be written 

as follows: 

�̂�𝑑
𝑃𝐴𝑅𝑊(𝑡) =  𝑎1�̂�𝑑

𝐴𝑅(𝑡 − 1) + 𝑎2�̂�𝑑
𝐴𝑅(𝑡 − 2) + ⋯ + 𝑎𝑗�̂�𝑑

𝐴𝑅(𝑡 − 𝑗) + 𝑏0�̂�𝑑
𝑃𝑀(𝑡) + 𝑐0�̂�𝑑(𝑡) 

where �̂�𝑑(𝑡) denotes the estimate of solar radiation of day 𝑑 at time interval 𝑡.  

2.3.3 Seasonal Persistence-based Regressive Models (SPR and SPNN) 

Seasonal persistence-based regressive models provide higher robustness and ability to exploit 

causal effects specific to user-behavior changes in user schedules, e.g., users usually 

consume about the same energy every morning or in certain time periods. Instead of 

generating the forecast based on the load at the same point in time in the previous day, it is 

possible to use an average load over an extended window of time in the previous day (the 

window can be one hour, for example). In addition, the total energy consumption can be 

another factor that can reduce the uncertainty of the forecasts. A set of features have been 

introduced to reduce the uncertainty associated with small variations in user schedules. This 

set of features are defined based on the load recorded on the previous day and on the 

corresponding day one week ago. In particular, the SPR model is defined as follows: 

ŷ𝑑
𝑆𝑃𝑅(𝑡|𝑎0, 𝑎1, … , 𝑎14)

=  𝑎0𝑓𝑑 + 𝑎1𝑦𝑑−1(𝑡) + 𝑎2𝑦𝑑−7(𝑡) + 𝑎3𝑦𝑟𝑠,𝑑−1(𝑡) + 𝑎4𝑦𝑟𝑠,𝑑−7(𝑡) + 𝑎5𝑦ℎ,𝑑−1(𝑡) + 𝑎6𝑦ℎ,𝑑−7(𝑡)

+ 𝑎7𝑦𝑑,𝑑−1(𝑡) + 𝑎8𝑦𝑑,𝑑−7(𝑡) + 𝑎9𝑦𝑑ℎ,𝑑−1(𝑡) + 𝑎10𝑦𝑑ℎ,𝑑−7(𝑡) + 𝑎11𝑦𝑙𝑜𝑤,𝑑−1(𝑡) + 𝑎12𝑦𝑙𝑜𝑤,𝑑−7(𝑡)

+ 𝑎13𝑦ℎ𝑖𝑔ℎ,𝑑−1(𝑡) + 𝑎14𝑦ℎ𝑖𝑔ℎ,𝑑−7(𝑡) 

where the features are as follows: 𝑓𝑑 corresponds to the type of the day (working day or 

weekend); 𝑦𝑑 is the electricity consumption at day 𝑑; 𝑦𝑟𝑠 is the rolling-sum of the electricity 

load; 𝑦ℎ is the total electricity load within the last hours; 𝑦𝑑ℎ is the difference in hourly load; 

𝑦𝑙𝑜𝑤 , 𝑦ℎ𝑖𝑔ℎ corresponds to the low and high energy consumption flag, respectively. 

We also explored the possibility of nonlinear dependencies between the above features, by 

introducing a Multilayer Perceptron (MLP) with the same set of features. The resulting model 

is called Seasonal Persistence-based Neural Network (SPNN) model. This architecture allows 

for finding non-linear dependencies between the features, which may reveal new patterns in 

users’ behavior. 

2.4 Generalized Additive Model of Facebook's Prophet 

A detailed description of the methodology implemented in the Prophet model of Facebook can 

be found in references [3,4]. This methodology is based on the Human-in-the-Loop modelling 

and provide fitting additive regression models (Generalized Linear Models and their extension 

on Generalized Additive Models, GAM) of the following form: 

ŷ𝑑
𝑃𝑟𝑜𝑝ℎ𝑒𝑡(𝑡) =  𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝑤𝑡 

where 𝑔(𝑡) approximates the trend of the series; 𝑠(𝑡) captures seasonal fluctuations (daily, 

weekly, etc.); ℎ(𝑡) captures the effects of holidays and other significant calendar events; 𝑤𝑡 is 

a normally distributed random disturbance. The following methods are used to approximate 

these functions: 

• trend: piecewise linear regression or piecewise logistic growth curve, 
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• annual or weekly seasonality: partial sums of a Fourier series with 𝑃 as a regular period: 

𝑠(𝑡) = ∑ (𝑎𝑛 cos (
2𝜋𝑛𝑡

𝑃
) + 𝑏𝑛sin (

2𝜋𝑛𝑡

𝑃
))

𝑁

𝑛=1

  

• "holidays" (e.g., official holidays and weekends - New Year, Christmas, etc., as well as 

other days during which the properties of the time series may change significantly - 

sports or cultural events, natural phenomena, etc.): represented as indicator variables. 

Estimation of the fitted model parameters is performed using the principles of Bayesian 

statistics. The STAN probabilistic programming platform is used for this purpose. 

2.5 Long Short-Term Memory Model (LSTM)  

Analysis of the electricity consumption in residential buildings have shown that the statistical 

characteristics of its weekly variations are almost constant. However, there are huge variations 

within hourly intervals due to the stochastic nature of users’ behavior. In these cases, an in-

depth analysis of intra-daily sequences is required, which can be provided by the LSTM 

artificial neural network due to its ability to learn long-term correlations, efficiently process time 

series data in short-term sequences, automatically detect and learn patterns of complex 

sequences and adapt to changing input data [7]. 

 

Figure 1 LSTM architecture with three main components: "forget gate", "input gate" and "output gate" 

It is known that in the LSTM network architecture, the output layer data is first sorted by using 

the sigma function. The non-stationary source data is excluded, and the remaining data is 

moved to the next step. The data is sorted using the following expression: 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝛼𝑡] + 𝑏𝑓), 

where 𝑊𝑓 is the input weighting coefficient; ℎ𝑡 is the output vector; and 𝑏𝑓 is the input layer 

threshold. 

The next process trains the selected input data to determine the prediction indicator and 

determines their acceptable values.  The sigma and tangent functions are used in this process: 

𝑖𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), 

𝐶𝑡 = 𝑡𝑎𝑛(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐), 

where 𝑥𝑡 is the input data; 𝑏𝑖 and 𝑏𝑐 are the neuron thresholds. 
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Based on the selected data, the neurons in the output layer are identified by systematically 

combining sigma and tangent functions. That is, the prediction result is determined by the 

following process: 

{
𝑂𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏0)

ℎ𝑡 = 𝑂𝑡tan (𝐶𝑡)
 

where 𝑂𝑡 is the initial data selected using the sigma function; and ℎ𝑡 is the neuron network 

output layer. 

In this study, we used the following parameters of the LSTM architecture:  

• The number of input layer neurons is 96 × 10; 

• The number of neurons of the first hidden recursive layer is 96 × 5; 

• The number of neurons of the second hidden recursive layer is 96 × 3; 

• The number of neurons of the output layer is 96; 

• The optimizer is “Adam”, with 40 epochs. 

3 Results and Conclusions 

In Figure 2, we present the load predictions for the community of buildings during the beginning 

of March 2016, after training the models for 2 consecutive months (Jan and Feb 2016). The 

above graphs illustrate well the performance of the predictive models and allow us to visually 

assess how correctly the AI models have been trained to learn the patterns of the load profile. 

The Facebook`s Prophet model provides Human-in-the-Loop forecasts and gives the expert 

the ability to customize the model by applying their experience and external knowledge, e.g., 

in terms of calendar day labelling, local holiday effects, additive conditions, and annual trends, 

making it a sophisticated but potentially more accurate forecasting tool. Prophet provides the 

smoothest forecast profiles as compared to the rest of the models, while it accurately predicts 

the 8am and 6pm peaks in the community load consumption.  

On the contrary, the LSTM forecast profiles try to capture the peaks in the load consumption 

and are less smooth compared to the Prophet’s forecast profiles. Also, it was found that when 

the number of training days increases then the variance of the predicted values, relative to 

some average baseline profile, increases. Despite this, the network perfectly captures peak 

consumption values during the morning and evening, which is an undoubted advantage 

compared to the other models. 

To test the accuracy of the forecasts, all models were simulated using data from 2016, i.e., 

365 days. The simulations were conducted in the day-ahead forecast mode in the cross-

validation way, which is close to the real situation of using the models. Based on the results of 

each day, the RMSE was calculated, averaged over the analyzed time interval. Since the cycle 

is moving step by step forward, the errors are obtained from a running average RMSE, Figure 

3. 
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Figure 2 Load predictions for residential buildings community (Wels, Upper Austria / March 2016) 
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Figure 3 Accuracy estimation of residential buildings community predictions via running average RMSE (Wels, 
Upper Austria / 2016) 

In order to provide an accuracy assessment that is not tied to the specific load amplitude values 

of the target community, the relative error was instead calculated. This is defined as the final 

value of the running average RMSE of the year divided by the mean community load. The 

overall accuracy of the models is also depicted in Table 1, which is calculated over 2016.  

Table 1 Comparison of AI-powered electricity load prediction methods with respect to relative average RMSE for 
the community of buildings. 

Prophet LSTM 
N-same-

days 
N-days HW SARIMA PAR PAR-W SPR SPNN 

0.667 0.653 0.731 0.621 0.678 0.634 0.543 0.532 0.682 0.681 

 

In this table, we see a comparison of the relative average RMSE of several standard and 

modern AI-powered models (namely Prophet and LSTM). AI-powered black-box model 

approaches, such as Prophet and LSTM, and machine learning models such as HW and 

SARIMA are generic time-series forecasting approaches that require computationally intensive 

training with several months of historical data. Furthermore, such models also require a careful 

hyperparameter configuration. Instead, the PAR and N-days models, designed specifically for 

electricity load-forecasting, exceed or match the performance of black-box forecasting models 

while they are characterized by low computational and configuration complexity. Furthermore, 

seasonal persistence-based regressive models use domain knowledge, but they are limited in 

the amount of statistical information that can be extracted from the observation sequences of 

measurements. Finally, we also observe that incorporating the weather forecasts in the PAR-

W model maintained or slightly improved the forecasting accuracy, however the improvement 

is rather limited. This should be attributed to the fact that the forecasting models without the 

weather data features are already adapting to the variations in the electricity load due to 

weather. 
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