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Abstract: This article introduces a new demand response model based on consumer prices, 

approached through the lens of reinforcement learning. In this case, the proposed 

methodology, leveraging elasticity analysis and reinforcement learning, is adept at identifying 

optimal times (hours of the day) when users are inclined to alter their demand. This leads to a 

dual benefit: a reduction in peak loads and a decrease in energy bills for consumers. 

Furthermore, considering that the reinforcement learning algorithm aims to maximize the 

benefits for both users and service providers, a time-of-use pricing system is derived. This 

system adapts to the fluctuating prices in the wholesale market as well as the elasticity of 

demand. Hence, it is intriguing to compare the obtained values against the prices currently 

offered to users. It is demonstrated that by having a consumer price that accounts for user 

behavior, drastic price increases for consumers can be avoided. This enables users to actively 

participate in modifying their demand while simultaneously preventing profit losses for 

electricity service providers. In a nutshell, a powerful tool for consumer price formulation is 

presented, taking into account uncertainties in both prices and demand. 

Keywords: demand response, electricity prices, reinforcement learning.  

1 Introduction 

German electricity market has experienced sharp price fluctuations over the last years. 

Especially the Ukrainian war had a significant impact on electricity prices; moreover, the outage 

of nuclear power plants in France also affected them, leading to higher and more volatile 

electricity market prices [1]. Consequently, user prices also increased, e.g. residential prices 

more than doubled between 2021 and the second half of 2022 [2]. This surge has not only 

enhanced the awareness for electricity consumption but even provoked behavioral changes to 

avoid higher costs. In response to the challenges resulting from such price volatility, time-

dependent price models such as time-of-use or dynamic prices have emerged as attractive 

solutions, to align energy consumption patterns with market dynamics. Implementations in 
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other countries have shown several benefits of time of use prices, including save on retail 

electricity sales as well as demand side flexibility [3]. Starting from the year 2025 it is mandated 

that every German energy supplier must offer these prices as an alternative to their costumers 

[4]. For this, innovative tools capable of formulating new prices according to both price and 

demand behavior are required. These tools will be able to maximize benefits for both users and 

energy providers. This paper proposes a method to use behavioral changes resulting from 

higher prices as a reference in order to obtain denotive elasticity values. Therefore, an 

intelligent Demand Response (DR) model based on prices, allowing the determination of both 

real-time consumer prices and a time-of-use pricing schemes is suggested. With these 

consumer prices, a quantitative comparison is made between the current option versus the 

proposed model. For the price formulation, a Reinforcement Learning (RL) method is used, 

which obtains prices that maximize benefits for both users and energy marketers, considering 

an environment of uncertainties. Thus, it is demonstrated that the proposed pricing based on 

artificial intelligence is suitable for price formulation compared to other options.  

2 Literature Survey 

The electric systems are constantly evolving due to new technologies being added to the 

supply chain, both physically and computationally. The inclusion of unconventional renewable 

energies has caused price variations in the market due to the unpredictable nature of the 

primary resource. Additionally, the emergence of electric vehicles and distributed generation 

within distribution systems has created the need for new transactional mechanisms that can 

understand the behavior of these new actors. The scientific community is currently focused on 

finding intelligent tools to predict and understand the behavior of these actors in order to 

improve consumer price formulation and maximize the benefits for all parties involved. This 

research approach has been decided to be continued with, as promising results have been 

shown in addressing current challenges such as uncertainties in electricity supply prices 

caused by external factors like wars or long-term events. In this particular study, specific events 

that have caused ideal scenarios for price variation and changes in user behavior have been 

considered. 

The evolving consumption patterns in the electric energy market, influenced by price 

variations, have raised significant concerns. A strategic solution to achieve energy balance 

and enhance market planning both in the short and long term is DR, a key component of 

Demand Side Management. DR involves sending economic signals to consumers to 

encourage adjustments in electricity usage. It can be broadly categorized into two types: price-

based DR and incentive-based DR. Price-based DR utilizes fluctuating price signals to affect 

user behavior, while incentive-based DR employs rewards or penalties to induce specific 

demand changes, such as fines for exceeding a certain consumption limit or rewards for 

reducing consumption like tariff category adjustments. Long-term strategies primarily focus on 

price-based DR. Numerous studies effectively address the challenges of price-based DR. For 

example, research identified as [5] developed a model that considers the impact of significant 

penetration of unconventional renewable energies on wholesale prices. This model, employing 

RL known for its effectiveness in uncertain scenarios, successfully correlates pricing with 

consumer behavior. 

Another study, referred to as [6], proposes a combined price and incentive-based DR model. 

Its goal is to smooth out demand peaks by offering variable pricing and incentives under a 
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direct load control scheme. This approach highlights the potential of artificial intelligence 

algorithms in managing price-related uncertainties in the wholesale market. Additionally, in 

study [7], a price-based DR model utilizing RL demonstrates the ability to identify and create 

optimal signals for various user types. This is achieved through a satisfaction function that 

balances user benefits. Conversely, research [8] explores an incentive-based DR model. Here, 

through consumer modeling, incentives are provided to reduce demand, aiming to maximize 

benefits for both consumers and utility companies or marketers. 

2.1 Research Gaps and Contributions 

From the current advancements in the field, this work addresses certain critical areas. Despite 

progress in DR program research, a significant gap remains in their practical application in 

real-world scenarios. Real data, such as that from a smart grid project in Argentina as 

referenced in [5], has been used as input for various models. However, accurately identifying 

user behaviors remains a challenge. There is an ongoing need for methodologies that 

effectively model demand elasticity to provide valuable input for these models. 

Furthermore, while state-of-the-art models have proposed promising real-time pricing 

solutions, their large-scale applicability remains distant from reality. This is primarily due to the 

prevalence of fixed and flat rate plans among users and the low penetration of smart meters 

capable of receiving pricing signals. Therefore, proposed schemes and solutions need to 

incorporate pricing options feasible over longer time scales. 

To address these challenges, this work presents significant contributions to enhance DR 

models and advance the state of the art: 

- A methodology for analyzing demand elasticity is introduced, using consumption and 

price data from Germany. 

- Transition pricing solutions are developed, focusing not only on real-time pricing but 

also on identifying critical peaks and implementing real-time adjustments. 

3 Problem Formulation 

To address the problem of DR, it is essential to model user behavior based on prices, and 

therefore it becomes necessary to obtain enough signals that represent elasticity (e) and 

behavior that allow having the appropriate signals for the model. This becomes all the more 

relevant considering for a Service Provider (SP) or a marketer, planning and formulating long-

term prices for them would be a difficult task, while maximizing their utility. Therefore, in this 

work, a scenario is considered where a group of users (d) are purchasing electricity from a SP 

(b). The core of its business is, in turn, buying electricity from the wholesale energy market (a) 

and reselling it to the users while generating profit. From this reasoning two very important 

considerations arise. On one hand, the SP should be an operatively functioning operator that 

is capable of bringing wholesale market prices to users effectively in order for them not to 

witness pronounced price fluctuations. On the other hand, it is important to develop pricing 

strategies that the users remain able to contribute actively with their varying demand whilst it 

is not affected on their satisfaction that is under a management of the RL algorithm (c). Based 

on these premises, each of the actors involved in this work will be formulated. Figure 1 

demonstrates the explained interactions.  
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Fig. 1. Market Scheme 

3.1 User Model 

In this section, the user modeling is formulated. This model is based on a user whose elasticity 

has been obtained from an analysis of historical demands and prices. The data used are 

described in more detail in the application section. The demand and prices before the price 

increase are called "Old," and after the increase, "New." Taking the price increase and the 

variation in demand, the elasticity (1) and the auto-elasticity (2) were calculated to understand 

the consumer behavior pattern. Then, these elasticities are added into the total elasticity that 

will serve as input in the RL algorithm. 

𝜉 =
Δ𝑑𝑢/𝑑𝑢
𝛥𝑝𝑢/𝑝𝑢

 (1) 

𝑎𝜉𝑖,𝑗 =
𝑝𝑗
𝑑𝑖

×
𝑑𝑖+1 − 𝑑𝑖
𝑝𝑖+1 − 𝑝𝑖

 
(2) 

 

For the RL algorithm, it is necessary to create objective functions based on the elasticity 

profiles of users. These functions will serve as rewards that the algorithm seeks to maximize. 

The user's benefit in this context is defined as the price paid for electrical service in relation to 

the cost of satisfaction (3) [9].  

𝑈𝑏𝑒𝑛𝑢,ℎ =∑ ∑ [(1 − 𝜌𝑢) ⋅ (𝜙𝑢,ℎ(𝑑𝑢,ℎ) − 𝜌𝑢 ⋅ (Δ𝑑𝑢,ℎ ⋅ 𝑝𝑢,ℎ)]
𝐻

ℎ=1

𝑈

𝑢=1
 (3) 

𝜙𝑢,ℎ(𝑑𝑢,ℎ) = 𝑑𝑢,ℎ ⋅ β𝑢,ℎ (
∑ 𝑑𝑢,ℎ
𝐻
ℎ=1

𝑑𝑢,ℎ
)

3

−∑𝑑𝑢,ℎ

𝐻

ℎ=1

 (4) 

Δ𝑑𝑢,ℎ = 𝑑𝑢,ℎ+ (𝜉𝑢 ∙ 𝑎𝜉𝑢) ⋅
𝑝𝑢,ℎ−𝑝𝑚𝑖𝑛

𝑝𝑚𝑖𝑛
, 𝑝𝑚𝑖𝑛 ≤ 𝑝𝑢,ℎ ≤ 𝑝𝑚𝑎𝑥 (5) 

 

Here, 𝑈𝑏𝑒𝑛𝑢,ℎ stands for the utility or benefit function for users {𝑢 ∈ 𝑈} in each hour {ℎ ∈ 𝐻}, 

where 𝑈 is the number of considered users and 𝐻 the number of considered hours. 𝜌𝑢 is a 

weighting factor that balances the user's preference between price and satisfaction. Δ𝑑𝑢,ℎ 

indicates the change in consumption, whether it is reduced or increased, as a part of DR 

actions. As described in (5), 𝜉𝑢 and 𝑎𝜉𝑢 refer to the previously mentioned elasticities. The term 

𝑝𝑢,ℎ is the price paid by users for their energy consumption. Additionally, 𝜙𝑢,ℎ represents the 

user satisfaction factor, as defined in (4), and this factor aligns with the concept of decreasing 
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marginal utility. In economic terms, decreasing marginal utility occurs when the perceived utility 

decreases with each additional unit of consumption. Equation (4) introduces a β term, 

representing the consumer's inclination towards DR; a higher β implies a more conservative 

stance towards reducing consumption. Moreover, both the increase and decrease in 

consumption must be considered, along with their impact on consumer satisfaction. Therefore, 

a model that accommodates both scenarios is required.  

3.2 Service Provider Model 

In this research, the model developed portrays the electric SP as a market agent in the 

commercial electric market, involved in buying energy from the wholesale market and selling 

it to users in the retail energy market. The SP is not responsible for maintaining and operating 

the distribution networks; its activities are limited to the commercialization of energy. The 

aggregator's profit in this business model is derived from energy trading activities, and the 

profit function is described in section (6). 

𝑆𝑃𝐵𝑒𝑛𝑢,ℎ =∑ ∑ [(Δ𝑑𝑢,ℎ(𝑝𝑢,ℎ − 𝑧𝑢,ℎ)]
𝐻

ℎ=1

𝑈

𝑢=1
 (6) 

 

In this context, 𝑧𝑢,ℎ symbolizes the purchase price of energy in the wholesale market for SP. 

3.3 Objective Function 

The objective function of the model, aimed at maximizing both social and commercial benefits 

for users and the aggregator/marketer, is presented in (7). 

𝐹𝑂 = max∑ ∑ (𝑆𝑃𝑏𝑒𝑛𝑢,ℎ +𝑈𝑏𝑒𝑛𝑢,ℎ)
𝐻

ℎ=1

𝑈

𝑢=1
 (7) 

3.4 Reinforcement Learning 

In this work, RL is utilized for managing the demand of electric distribution users. This has 

been implemented in a simulated environment; however, the approach aims for the algorithm 

to be informed by user behaviors in an actual scenario. RL relies on the interactive learning 

that occurs between agents and the environment. Here, the objective of a learning agent is to 

identify the action that yields the greatest reward through experimentation. Interactions 

between the agent (SP) and the environment (users) take place at discrete intervals 𝑡, with 

each agent action producing a reward (financial outcome) and transitioning to a new state 𝑠𝑡+1. 

Q-learning is the method employed for the discovery of rewards and actions. Consequently, 

each action chosen by the agent incurs a reward (positive or negative) and prompts a transition 

to a new state. The set of state, action, reward, and subsequent state is termed "policy" 

(𝑠, 𝑎, 𝑟′, 𝑠′) and is recorded in what is known as the Q-matrix. Through trial and error, the agent 

strives to maximize the reward derived from actions. Following the accumulation of experience, 

the Q-matrix is organized to pinpoint the optimal actions. Specifically, in this study to curtail 

demand, actions of the agent are delineated as price adjustments, and the advantage is 

depicted by the objective function outlined in (7). 
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Fig. 2. Reinforcement Learning flow chart 

4 Result Analysis 

To identify the elasticity resulting from price increase, measured consumption time series are 

examined.  Data from the openMeter platform [10] is used for this. The openMeter platform is 

an open data platform and contains measured consumption time series for different customers. 

In addition, it contains metadata, including location as well as area of the customer, however 

no information on the customer’s tariffs nor on their installed devices are provided. For this 

paper, only residential consumption time series are considered.  

In the process of identifying elasticity from customers, two problems were faced. On the one 

hand, different customers have different tariffs, which might have dissimilar conditions such as 

price guaranties for certain terms. Hence, it is unknown when the consumer received the price 

increases. On the other hand, there are also customers who increased their consumption 

during times of high prices, which might e.g. result from new devices.   

Thus, consumers are searched, who reduced their load price-dependently by changing their 

behavior, i.e. not: reduced their load due to absence time or due to the installation of new more 

efficient devices (which in the long term consume price-independent less energy). For this, a 

multi-step approach is applied: the first step is to identify consumers who are generally eligible 

by selecting customers who lowered their yearly consumption in the year 2022 compared to 

average of the last two years before.  In the second step, for the selected costumers from the 

first step, the course of the yearly time series is compared for different years. To do this, the 

yearly time series are smoothed using a rolling window. This enables to identify longer periods 

of low electricity consumption. The third step is to compare the course of the average daily 

consumption, separated by week and weekend. It allows recognize time series, which are 

reduced by a time-independent offset, resulting for example form new devices. The filtering is 

depicted in Figure 3.  
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Fig. 3. Filtering flow chart 

Employing the described method, 15 time series are identified, which are averaged and used 

to apply the price formulation. As mentioned, the consumer prices vary for different consumers, 

hence no common price can be considered, however, behavioral changes are not only 

influenced by the real customer price, but also by information from media etc. Thus, not the 

time of changing prices is detected, but the time of changing behavior. For this, the average of 

the yearly course of all selected time series is compared for different years and possible 

changepoints are identified, which are shown in Figure 4. Subsequent, the changepoint with 

the largest effect is selected.  

 

Fig. 4. Changepoint identification based on consumption change. 

For the residential prices data from a German comparison portal for electricity prices is 

averaged for the time before and after the identified changepoint. Furthermore, the hourly 

market price average is calculated. To enable a comparison between market price and 

customer price, a factor is used, taking into account taxes and dues. The limits of the price 

range are calculated by applying a symmetric factor. Figure 5 shows the resulting prices. Once 

the values to identify the behavior of the users have been obtained, the necessary database 

is composed, which will be required as input to the algorithm, as is shown in Figure 2. A 

summary of the data used in this paper is presented in Figure 6. 
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Fig. 5. Demand and Price Comparison 

Given the relevance of elasticity in understanding user behavior, the elasticity values from 

equations (1) and (2) were calculated. Therefore, Figure 6 displays the auto-elasticity (2) as 

well as the result of (𝜉𝑢 ∙ 𝑎𝜉𝑢). As can be seen in Figure 6(a), when auto-elasticity is obtained, 

it is possible to determine changes in consumption and price specifically with respect to the 

peak at 19:00 hours. However, once the elasticities are combined, it can be observed how 

the elasticity matrix also acquires the behavior of how users responded to the price increase 

as seen in Figure 6(b). 

 
 

Fig. 6(a). Auto-elasticity Fig. 6(b). Total Elasticity 

The DR model is executed based on the diagram in Figure 2. Consequently, new prices are 

obtained, which will be sent to users under three different schemes (real-time pricing, time-of-

use pricing, and critical peak pricing). In this regard, it can be observed in Figure 7(a) how the 

model effectively manages to provide users with prices according to their behavior. It is also 

noticeable that during peak times, higher prices are offered to encourage the reduction of 

peaks, and during off-peak hours, and depending on the user's elasticity, lower prices can also 

be obtained to encourage, on the other hand, increased consumption. Similarly, in Figure 7(b), 

it can be seen how the prices based on the time-of-use scheme are high during the two demand 

peaks, while during off-peak hours, for example from 24:00 to 06:00, the prices are reduced. 

Finally, in Figure 7(c), by offering a critical peak price, the model effectively sends a high price 

during the critical demand peak, which in this case occurs between 18:00 and 20:00. 
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Fig. 7. Real-time pricing (a), time-of-use pricing (b), and critical peak pricing (c) 

5 Conclusions and Future Works 

This paper introduces a new demand response model based on price, approached through the 

lens of reinforcement learning. The proposed method leverages recent price increases in the 

German electricity market, to analyze elasticity. Based on this, in combination with typical 

patterns of market electricity prices, reinforcement learning is adept at identifying optimal times 

(hours of the day) when users are inclined to alter their demand. This leads to a dual benefit: a 

reduction in peak loads and a decrease in energy bills for consumers. Furthermore, considering 

that the reinforcement learning algorithm aims to maximize the benefits for both users and 

service providers, a time-of-use pricing system is derived. This system adapts to the fluctuating 

prices in the wholesale market as well as the elasticity of demand. Hence, it is intriguing to 

compare the obtained values against the prices currently offered to users. It is demonstrated 

that by having a price that accounts for user behavior, drastic price increases for consumers 

can be avoided. This enables users to actively participate in modifying their demand while 

simultaneously preventing profit losses for electricity service providers. In a nutshell, a powerful 

tool for price formulation is presented, taking into account uncertainties in both prices and 

demand. 

The proposed method is applied to residential consumption and price time series of German 

costumers and exemplary resulting prices are presented. The presented work only considered 

costumers, which changed their behavior, neglecting customers, which behave price 

independently; hence the results tend to overestimate the elasticity and cannot be extrapolated. 

Further research based on a larger database could investigate the effect on the overall 

residential load. In addition, customer segmentation and identifying reasons for and against 

price independent behavior could be analyzed more in detail. As the considered customers pay 

their electricity based on a time-independent prices, load shifting is considered indirectly and 

should be investigated in further research based on demand time series with time dependent 

tariffs. Similar to this, moreover, it would be interesting to adapt the algorithm to take into 

account day ahead prices and build individual prices based on prices and elasticity.  
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Additional application of the proposed methods could be in the redispatch context, aiming at 

incentivizing to adapt the load to two separate zonal prices in order to reduce redispatch costs 

in Germany.  

The research leading to this publication has received funding from Bundesministerium für 

Wirtschaft und Klimaschutz der Bundesrepublik Deutschland. 
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