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Abstract: A separate balancing energy market was introduced in Germany in 2020 for 

automatic and manual frequency restoration reserves (aFRR/mFRR), representing a new 

trading opportunity for market participants. The introduction of the balancing energy market 

makes participation in the energy auction possible without having been successful in the 

capacity auction, enabling more short-term trading of balancing energy. The market, however, 

possibly changes the performance of prediction models used by market participants to 

maximize profits. To address this, this work investigates the prediction of aFRR activated 

volume and price on the new balancing energy market using different machine learning 

methods and input data combinations. The best performing method and optimal number of 

features in terms of R2-values were identified. Despite various attempts with different methods 

and input data combinations, the models for activated volume generally performed poorly. This 

outcome, however, is logical since balancing energy would not be needed if its activation were 

predictable. For aFRR energy prices, R2-values of more than 95% were reached, indicating 

that with the appropriate input data combination and method, predicting aFRR energy prices 

is possible.  

Keywords: Balancing Energy, Electricity Balancing, Machine Learning, Prediction 

1 Background and Motivation 

The balanced outcome of the European and German electricity markets, where supply meets 

demand, does not always correspond to a physical balance between generation and 

consumption of electrical energy. Imbalances can result from unexpected weather conditions 

or consumer behavior and cause a deviation of the grid frequency from its nominal value. To 

compensate such short-term imbalances, transmission system operators (TSOs) procure and, 

if necessary, activate balancing reserves, which are composed of standard products in Europe. 

Automatic and manual Frequency Restoration Reserves (aFRR/ mFRR) are standard products 

that are used to restore the frequency to its nominal value. Different auctions for each of the 

standard products are organized by TSOs to secure a sufficient amount of reserves and a cost-

efficient activation of these reserves. For aFRR and mFRR, remuneration in these auctions 

consists of a capacity price for the reservation of balancing capacity and an energy price for 

the actual provision of energy when activated. 

Balancing energy markets were introduced in Germany in November 2020 for aFRR and 

mFRR as a result of the Electricity Balancing Guideline (EB GL) issued in 2017 [1]. Before the 

introduction of balancing energy markets, balancing capacity bids were awarded in a capacity 

auction based on a capacity price merit-order. Energy price bids from balancing service 

providers that were accepted in the capacity auction were considered for activation. With the 

new balancing energy markets, participation in the energy auction is also possible without 
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having been successful in the capacity auction, enabling more short-term bidding of balancing 

energy products. Balancing service providers can now act at shorter notice and better align 

their bids in the balancing energy markets with known awards from prior electricity auctions. 

To couple aFRR balancing energy markets at European level and enable cross-border 

exchange of balancing energy, a platform called PICASSO was established in June 2022 [2]. 

With the introduction of PICASSO, some market parameters like the remuneration rule and 

validity period were changed [3]. 

The balancing energy market provides a new opportunity for market participants like power 

plant and storage operators to sell their capacity. Such market participants employ prediction 

tools to maximize their profits across several electricity markets. The new balancing energy 

market and the changed market parameters could affect the ability to predict activated aFRR 

volumes and prices. The question that arises is how activated aFRR volumes and prices can 

be predicted and how well prediction models perform.  

In related studies, attempts were already made to predict the balancing energy prices and/ or 

the volume of activated balancing reserves using machine learning [4–6]. The achieved results 

in such studies were of low performance. These studies, however, often analyzed a time frame 

during which market design changes were implemented. Furthermore, none of these studies 

analyzed the prediction of the balancing energy market after the introduction balancing energy 

market in Germany. To expand the current state of research, this study therefore bundles the 

attempt to predict aFRR activated volumes and prices, while analyzing a time frame after the 

introduction of the balancing energy market in Germany. 

2 Methodology 

This work uses supervised learning techniques to investigate the prediction of four target 

variables: positive and negative aFRR volumes and prices. Four different tree-based machine 

learning methods are investigated: Gradient Boosting, Random Forest, XGBoost and 

LightGBM. Different input data combinations are investigated for all methods and compared 

as well. The first step of the methodology is the collection of input data. Then new features are 

engineered from the existing input data and some features are transformed to deal with 

inadequate scaling. Finally, the models are trained and their performance is evaluated across 

the different methods. 

2.1 Collection of Input Data 

The input data for the investigations in this work contains market data like forecasted electricity 

generation, actual electricity generation, forecasted and actual electricity consumption and 

day-ahead market prices. Forecasted generation is used for variable renewable energy 

sources like solar energy, wind onshore and wind offshore. Actual electricity generation is used 

for variable renewable energy sources as well, but also for other energy sources such as 

biomass, hydropower and conventional sources. The consumption data contains the total grid 

load and load from hydro pumped storages. [7] 

Next to general market data, data on activated balancing energy and its price, but also results 

from the balancing capacity market are used. [8, 9] 
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All input data is collected in 15-minute resolution for the time period between May 2021 and 

April 2023. 

2.2 Input Data Generation and Transformation 

After the collection of input data, the quality of the data is inspected. Missing values are 

dropped and data from different sources is joined. Next, features are generated from the 

collected input data (feature engineering). Features engineered are generation ramps, 

consumption ramps and forecast errors of generation and consumption. Generation and 

consumption ramps represent how fast generation or consumption of electricity from a certain 

source changed within 15 minutes. As values, these features are represented by the difference 

of generation or consumption values at timesteps 𝑡 and 𝑡 − 1. Forecast errors of generation 

and consumption are represented by the difference between forecasted and actual values. 

The target values contain a certain recurring pattern. Particularly for activated volumes of 

aFRR, a peak in activation is seen for certain hours of the day, as shown in Figure 1 for positive 

aFRR. 

 

Figure 1: Seasonality in activated positive aFRR volume 

For negative aFRR, a seasonality in activated volume can be seen as well, which is shown in 

Figure 2. 

 

Figure 2: Seasonality in activated negative aFRR volume 

To capture these relationships, categorical features for hour, time of day, day of week, month, 

and season are added. These features categorize which hour, time of day, day of week, month 

and season each activation occurred in. However, as categories are represented as numerical 



18. Symposium Energieinnovation, 14.-16.02.2024, Graz/Austria  

   

Seite 4 von 11 

values in machine learning, these time-related features have to be encoded. The challenge 

that arises is to capture the cyclical nature of the time-related features in numerical values, i.e. 

the first day of the week follows the last day of the week. In the example of day of the week as 

a feature, the distance between Sunday and Monday is the same as between Monday and 

Tuesday, but if these features were to be represented as numbers 1 to 7, the distance between 

7 and 1 is not the same as 1 and 2. To solve this issue, the numbers that represent the cyclical 

time features 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑣𝑎𝑙𝑢𝑒 are encoded into sine and cosine values. This way, the first number 

in the set of values always comes after the last. Formulas (1) and (2) are used for this. 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖𝑛𝑒 = sin⁡(
2𝜋∙𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑣𝑎𝑙𝑢𝑒

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑥
)  (1) 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑐𝑜𝑠𝑖𝑛𝑒 = 𝑐𝑜𝑠⁡(
2𝜋∙𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑣𝑎𝑙𝑢𝑒

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑥
)  (2) 

Lastly, some feature values have to be transformed to support the algorithms’ learning ability. 

For example, some source data are heavily skewed with most values close to zero and a few 

outliers. To even out this distribution, the values are transformed using a Yeo-Johnson 

transformation [10]. 

The different input data combinations that are compared vary in the use of actual and/ or 

forecasted generation and the handling of skewness. The different combinations are shown in 

Table 1. 

Table 1 Input data combinations 

Combination Generation and consumption data 

used 

Max no. of 

features 

Skewness 

threshold 

1 Only forecast values 19 1.5 

2 Forecast and actual values 59 1.5 

3 Forecast and actual values 59 1 

4 Forecast and actual values 59 No transformation for 

skewed distributions 

2.3 Machine Learning and Model Training 

2.3.1 Machine Learning Methods 

This study uses supervised learning, which means the input data is labeled. Each input has a 

specific “correct answer” or output. In this study, the output corresponds to the activated aFRR 

volume or its price. As the target prediction is a continuous value i.e. volume or price, it is a 

regression problem. [11] 

The machine learning methods used in this study are Gradient Boosting (GB), Random Forest 

(RF), XGBoost (XG) and LightGBM (LG). These methods are based on combining two 

concepts: decision trees and ensemble learning. With a decision tree model, the model can be 

understood as a protocol that is followed by each observation of the input data, going through 

the nodes, and making decisions based on tests on its predictors [11]. Ensemble learning 
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builds a stronger model by combining a series of weak models, in this case a series of decision 

tree models [12]. 

2.3.2 Hyperparameter Tuning 

When building machine learning models, there are two different types of parameters that are 

to be determined. There are parameters that the model determines through training, these 

cannot be changed manually. Hyperparameters, on the other hand, are set manually before 

the training process. Hyperparameters can be optimized, a process also known as 

hyperparameter tuning. This improves model performance by finding the best 

hyperparameters for the specific case i.e. dataset and algorithm. Several methods for 

hyperparameter tuning exist, including Random Search. In Random Search, hyperparameters 

are selected at random until finally finding a near best set. [13, 14] 

2.3.3 Model Training 

The final input data is split into train and test sets randomly in a ratio of 80:20. The split is 

randomized to ensure an equal division of the input data, especially in regard to the categories 

i.e. to have equal observances in each season. The test set is used to evaluate model 

performance and is therefore not used for training. Hyperparameters of each model are tuned 

using a 5-fold cross validation on the training set using the randomized search algorithm.  

For each method, the different input data combinations shown in Table 1 are investigated. In 

total, this results in 16 models with sets of best hyperparameters for each of the target 

variables. Each set of hyperparameters is used to initialize a model that is trained and 

evaluated. For each model, the features’ importance is evaluated. The features are ranked in 

a list from most to least important. The model is consequently trained and evaluated with an 

increasing number of features starting from an initial model with only the most important feature 

and gradually with all features. This is done to find the optimal number of features, evaluating 

model performance at every increase of number of features. 

2.4 Model Evaluation 

Finally, model performance as well as feature importance is evaluated. Each machine learning 

method has an embedded feature importance evaluation that automatically evaluates feature 

importance during training. For every number of features in the input data, the model 

performance is evaluated. The evaluation metric chosen is the coefficient of determination R2, 

which is a common assessment criterion for supervised learning methods. 

3 Results 

For each of the input data combinations shown in Table 1,  the machine learning method that 

reached the best result in terms of R2 value and the optimal number of features will be shown 

and discussed. 
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3.1 Volume 

3.1.1 Positive aFRR 

For the activated volume of positive aFRR, the best performing model for each combination of 

input data with the reached R2 values and optimal number of features are shown in Figure 3. 

 

Figure 3: R2 values and optimal number of features for each input data combination for positive aFRR volume 

In the first combination only forecasted generation and consumption data were included. Using 

this input data, the best results were achieved by the Random Forest algorithm with an R2 

value of 24.59%. Starting from the second combination, both actual and forecasted values 

were included. Best performance was reached with the fourth input data combination using the 

LightGBM method. This combination reached an R2 value of 40% with an optimal number of 

features of 39. Generally, it can be seen that model performances increased by adding the 

actual generation and consumption values. However, performances in general were not 

sufficient for this target variable. 

Table 2 shows the most important features for each input data combination for the target 

variable positive aFRR volume. 

Table 2 Best performing method and most important features for each input data combination for positive aFRR 
volume 

Combination Best 

method 

Most important features 

1 RF Generation forecast others, generation forecast photovoltaics 

and wind, capacity price of positive aFRR 

2 LG Actual generation nuclear, actual generation other renewables, 

month 

3 XG Actual generation hydro pumped storage, actual generation 

hydro pumped storage ramp 

4 LG Actual generation hydro pumped storage, actual generation 

hydro pumped storage ramp, actual generation hydropower 

ramp 

Table 2 shows that for the first input data combination, forecasted generation of variable 

renewable energy sources is an important feature. The absolute forecasted generation may 

be correlated with the magnitude of forecast errors, which are an important cause of aFRR 
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activation. For the other combinations, hydropower-related features dominate, which might 

reflect the dominance of hydropower plants participating in the aFRR market in Germany [15]. 

The inclusion of actual generation and consumption data improves model performance, 

indicating that the prediction of activated positive aFRR is difficult if actual generation data is 

not available. The significance of actual generation from conventional sources aligns with the 

fact that positive aFRR is commonly activated from conventional power plants as these are 

easier to ramp up compared to e.g. variable renewable energy sources. However, in the 

application of volume and price prediction models by market participants, real-time actual 

generation data is not available, which means that model performance is likely to be weak for 

these applications.  

3.1.2 Negative aFRR 

The summarized results for the prediction of the activated negative aFRR volume is shown in 

Figure 4. 

 

Figure 4: R2 values and optimal number of features for each input data combination for negative aFRR volume 

Generally, the results show that model performances for negative aFRR volume are worse 

than for positive aFRR volume, with none reaching an R2 value of more than 36.9%. The third 

combination, in which skewed values above 1 or below -1 were transformed, achieved the best 

performance for this target variable. For this combination, the XGBoost model achieved an R2 

value of 36.9% with an optimal number of 29 features. Like the results for positive aFRR 

volume, the performance of the first combination with only forecasted values is worse than 

those with actual values. 

The most important features for each input data combination for negative aFRR volume are 

shown in Table 3. 

Table 3 Best performing method and most important features for each input data combination for negative aFRR 

volume 

Combination Best 

method 

Most important features 

1 RF Generation forecast photovoltaics and wind, day ahead price 

DE/LU 

2 LG Residual load forecast error, actual consumption hydro pumped 

storage, capacity price of negative aFRR 

#13

#28 #29 #29

0

10

20

30

40

50

0%

10%

20%

30%

40%

50%

1 RF 2 LG 3 XG 5 LG

R2 values optimal no. of featuresR2 values

R
2

v
a
lu

e

N
o

. 
o
f
fe

a
tu

re
s



18. Symposium Energieinnovation, 14.-16.02.2024, Graz/Austria  

   

Seite 8 von 11 

3 XG Actual consumption hydro pumped storage ramp, actual 

consumption hydro pumped storage, actual consumption 

residual load ramp 

4 LG Actual consumption hydro pumped storage ramp, residual load 

forecast error 

For the target variable negative aFRR volume, forecasted generation of photovoltaics and wind 

is the most important feature for the first input data combination as well. As for positive aFRR 

volume, this indicates a correlation between the absolute forecasted generation from variable 

renewables and forecast errors which cause aFRR activation. For the other input data 

combinations, actual generation and consumption of hydro pumped storages still dominate as 

important features. Capacity price seems to influence this target variable as well. 

3.2 Energy Price 

3.2.1 Positive aFRR 

The models for the prediction of positive aFRR energy prices generally achieved much better 

results than the ones for the activated volumes. The highest R2 values and optimal number of 

features for each input data combination for the positive aFRR price are shown in Figure 5. 

 

Figure 5: R2 values and optimal number of features for each input data combination for positive aFRR price 

For all four combinations, models achieved R2 values of more than 90%. The best performance 

was reached by the third input data combination, with an R2 value of 95.79% achieved by the 

Random Forest algorithm and an optimal number of 23 features.  

Table 4 shows the most important features for each input data combination for positive aFRR 

prices. 

Table 4 Best performing method and most important features for each input data combination for positive aFRR 

price 

Combination Best 

method 

Most important features 

1 RF Capacity volume procured positive aFRR, month, capacity price 

of negative aFRR 

2 LG Residual load forecast error, actual consumption hydro pumped 

storage, capacity price of negative aFRR 
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3 RF Actual generation other renewable, actual generation nuclear, 

month 

4 LG Actual generation nuclear, Capacity volume procured positive 

aFRR, capacity price of negative aFRR 

To summarize, capacity prices of negative aFRR and the volume of positive aFRR capacity 

seem to dominate, as well as generation from conventional sources. The fact that negative 

aFRR capacity prices are an important feature seems counter-intuitive, but could mean that if 

the demand for negative aFRR capacity and thus its price is high, an excess supply in the grid 

is to be expected and therefore the need for positive aFRR is low. Out of all time-related 

features, only the month seems to have an effect on this target variable. 

3.2.2 Negative aFRR 

For negative aFRR prices, model performances were reasonably good. The summarized 

results are shown in Figure 6. 

 

Figure 6: R2 values and optimal number of features for each input data combination for negative aFRR price 

Interestingly, the best performances were achieved by the Random Forest algorithm for all 

combinations. The third combination achieved the best model performance for this target 

variable with an R2 value of 93.45% and an optimal number of features of 17. 

The most important features for each input data combination for the prediction of the negative 

aFRR price are presented in Table 5. 

Table 5 Best performing method and most important features for each input data combination for negative aFRR 

price 
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Most important features 

1 RF Capacity price of positive aFRR, generation forecast other, time 

of day 

2 RF Actual generation nuclear, actual generation other renewable, 

capacity price of positive aFRR, month 

3 RF Actual consumption hydro pumped storage ramp, residual load 

forecast error, actual generation hydro pumped storage 
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4 RF Actual generation nuclear, actual generation other renewables, 

capacity price of positive aFRR 

Although the general trend that hydropower-related features dominate persists, the most 

important features are quite different among the combinations. This is peculiar since all the 

best performances were achieved by the Random Forest algorithm. This points to the 

possibility that data transformations have an important function in determining which features 

are important. Furthermore, it is counter-intuitive that the capacity price of positive aFRR would 

influence the energy price of negative aFRR. Again, the reason could be that the model 

interprets the low capacity price of positive aFRR as a signal for the demand for negative aFRR 

that influences its energy price. 

4 Conclusion 

The goal of this paper was to update and expand the current state of research on the prediction 

of activated balancing energy volumes and prices. Four different machine learning methods 

were used with different input data combinations, varying the use of actual and/ or forecasted 

generation and consumption and the handling of skewness, to predict activated aFRR volumes 

and prices in Germany for a time period between May 2021 and April 2023. 

For the activated volumes of positive and negative aFRR, model performances were generally 

not optimal. Although the entire analyzed time period was after the introduction of the balancing 

energy market in Germany, some market parameters were still changed during the analyzed 

period, which might complicate the prediction. Forecasted generation from variable renewable 

energy was the most important feature when no actual, real-time generation and consumption 

data was considered. When adding the actual generation and consumption data, model 

performances increased slightly, because activated aFRR is included in the actual generation 

and consumption data. 

The prediction models performed better for balancing energy prices, reaching R2 values up to 

95,8%. Balancing capacity prices were important features to predict balancing energy prices. 

However, for the energy price of positive aFRR, the capacity price for negative aFRR was most 

important and vice versa. This could mean that the capacity price of the opposite direction 

reflects the need for the opposite product and thus decreases the price of the considered 

product. Future research should, however, investigate this in more detail.  

No machine learning method performed best for all target variables and input data 

combinations. For each individual case, another method performed best. As for the handling 

of skewness, there is a certain threshold at which skewed values should be transformed, but 

it differs per method and input data combination. 

Overall, the results show that a prediction of activated aFRR volume is difficult. This seems 

logical, because if the activated volume were predictable, the activation of aFRR could be 

prevented by trading on the intraday electricity market. The prediction of balancing energy 

prices reaches better results. However, if market participants were to use such a prediction to 

their advantage and in turn influence market outcome, it is not certain that predictions would 

stay reliable. 
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