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NET LOAD ERROR: WHAT IS A GOOD LOAD FORECAST? 

Nikolaus HOUBEN*1, Amela AJANOVIC1, Hans AUER1, Reinhard HAAS1 

Overview 

As we transition towards a decarbonized economy, the integration of variable renewable energy 

resources (VRE) and sector-coupling into the electricity grid places unprecedented pressure on grid 

operators to effectively forecast and curb peak load. Today there exists a plethora of load forecasting 

methods, ranging from simple heuristics to advanced machine learning algorithms that can be used for 

this task. When selecting a suitable method, practitioners often look to conventional Euclidian error 

metrics, such as the root-mean-squared error (RMSE). However, these metrics are not motivated by 

real operational requirements in electricity grids. Furthermore, they exhibit what has been referred to as 

the “double penalty effect” (see [1]). This effect occurs when a forecast of a peak is correct in terms of 

intensity, size, and timing, but incorrect exact location. For an example consider Figure 1, where (a) 

shows an informative, but erroneous forecast, while the more accurate (b) is a constant line and thus 

uninformative for grid operators.  

 

Figure 1: Double Penalty Effect of Euclidian Performance Metrics 

Moreover, in a recent review article on low-voltage load forecasting Haben et al. [2] remark that: “there 

are very few examples of the impact and role the forecast’s accuracy has on the outputs of the 

application.” With this work we hope to contribute to closing this research gap, by presenting an 

application-driven error metric that evaluates forecasts based their ability capture peak load. As reducing 

peak load is a global objective in electricity grids, and increasingly trickles down to consumers through 

demand charges, the methods presented here cater to all those asking themselves if their load 

forecasting method would in fact be useful in a real energy system application. 

Methods 

Consider a load timeseries 𝑦𝑡 and a forecast �̂�𝑗=1:𝐻;𝑡 ∀𝑡 ∈ 𝑇. We propose the Net Load Error (NLE), 

which evaluates an ex-post operational cost 𝐶𝑜𝑝𝑟 attributed to the maximum net load 𝒍𝒕 against a daily 

demand charge 𝑃𝐷𝐶: 

𝐶𝑜𝑝𝑟 =  ∑ max 𝑙𝑡;𝑑 ∗ 𝑃𝐷𝐶

𝑑

 

The net load results from operating a battery electric storage system (BESS) through Model Predictive 

Control (MPC). Specifically, by charging the BESS with charging action 𝑢𝑡, the real load 𝑦𝑡 can be 

modified resulting in the net load 𝑙𝑡 as given by: 

𝑙𝑡 = 𝑦𝑡  +  𝑢𝑡 

To understand how the charging action 𝑢𝑡 is found, examine the stylized energy system in Figure 2(a), 

which at timestep t consists of a scaled real load (black) 𝒚𝒋=𝟏:𝑯;𝒕, its scaled forecast (orange) �̂�𝒋=𝟏:𝑯;𝒕, a 
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BESS with parameters 𝜽. To achieve peak load reduction an optimizer minimizes the following 

optimization problem at each timestep t, by finding charging actions u (𝒖𝒋=𝟏:𝑯;𝒕): 

min
𝑢

𝐶  = min
𝑢

(𝑝ℎ +𝑉(𝜃))  s.t.  𝑔(𝑢, 𝑃𝐷𝐶 , 𝜃) ≥ 0 ; ℎ(𝑢, 𝑃𝐷𝐶 , 𝜃) = 0 

The horizon peak 𝑝ℎ is the highest net load value within the horizon H. V(.) is a terminal cost term, 

quantifying the value of stored energy at the final timestep j=H in the optimization. This term ensures 

that the BESS is not fully discharged at the end of each optimization. The constraints g and h incorporate 

the linearized BESS dynamics, as well as the horizon peak.  

Moving on to Figure 2(b), the usual MPC formulation prescribes the first charging action from the 

optimization at timestep t be applied to the real system at the next timestep t+1; 𝑙𝑡+1
𝑜𝑝𝑟

 =  𝑦𝑡 + 𝑢𝑗=1;𝑡  . 

Consequentially, the state-of-charge (SOC) is updated;  𝑆𝑂𝐶𝑗=0;𝑡+1 = 𝑆𝑂𝐶𝑗=1;𝑡. 

The key insight of the NLE is that a charging action based on an erroneous forecast leads to a sub-

optimal net load, as shown in Figure 2(b), where the operational peak is greater than the optimally 

planned one. Repeating this for all timesteps t, as shown in Figure 2(c), once with the forecast as the 

input to the optimizations and once with the ground truth (perfect forecasts), a cost difference can be 

evaluated (see Figure 2(d)), which we refer to as the NLE. 

 

 

Figure 2: Net Load Error Framework 

Results 

We evaluate the NLE and RMSE on forecasts of 6 machine learning forecasting models on an open-

source Los Angeles county-level electricity load dataset [3]. Results show the expressivity of such the 

proposed metric and demonstrate the importance of considering load forecasts in the context of real 

energy applications. 
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