

Publishing Crystal Structures

Ana Torvisco 15.06.2012

Outline

Part 1

- Crystals
 - Quality of crystals
 - Growing crystals

Part 2

- Submitting a sample for analysis
- Determining quality of data
- Preparing data for publication
- Submitting data for publication
- Crystallography programs

- Vessel has to be clearly labeled
- Form needs to be filled out
 - Label on sample must match sample code on form
 - Location of sample
 - Stability and/or Toxicity
 - Synthetic route
 - Starting materials
 - Byproducts
 - Proposed molecular formula and structure
 - Solvents used in crystallization

NO FORM = NO DATA

- Sample submitted <u>does not</u> equal a crystal structure
 - Crystal quality
 - Poor crystallinity
 - Too small
 - Data collection
 - Poor diffraction
 - Long collection times
 - Solving and refining data
 - Incompleteness
 - Twinning
 - Disorder
 - Correct structure, but not publishable
 - Inability to determine correct structure

- Sample submitted <u>does not</u> equal a crystal structure
 - Crystal quality
 - Poor crystallinity
 - Too small
 - Data collection
 - Poor diffraction
 - Long collection times
 - Solving and refining data
 - Incompleteness
 - Twinning
 - Disorder
 - Correct structure, but not publishable
 - Inability to determine correct structure

- Inability to collect data or poor data quality
 - Data collection
 - Remount sample
 - Sample will be consumed entirely unless noted in form
 - Alternate data collection strategy
 - Recrystallize
 - Purify sample
 - Alternate solvent
 - Alternate method of crystal growing

Determining Quality of Data

- Data collection
 - Close to 100 % Completeness
 - Collected most of the reflections in the asymmetric unit
- Refinement
 - Low R1 values (below 10 %)
 - Measure of how well the refined structure predicts the observed data.
 - Low wR₂ values (below 20 %)
 - Least-squares residual; measure of how intensities calculated for the Xray reflections match those measured experimentally.
 - High values could be attributed to:
 - Incorrectly assigned atoms
 - Unaccounted electron density
 - Disorder

Determining Quality of Data

- Low R(int) values (below 10 %)
 - Measure of how well the data merges.
 - Incorrect Laue group
 - Twinning
 - Crystal decomposition
 - Bad or missing absorption correction
- Residual electron density is close to 0 %
- Final structure makes chemical sense

Successful Data Analysis

- Obtain crystal structure which refines well
- Resolve twinning or disorder
- Resolve any other issues present
- Once data is satisfactory you will receive:
 - Crystallographic information file or CIF
 - Copy of the CIF check results
 - Crystallographic table
 - Information regarding structure refinement
 - Bond lengths and angles
 - Labeled and numbered crystal structure
 - Sample

- Crystallographic information file or CIF
 - Standard file for the archiving and distribution of crystallographic information.
 - Used to validate the quality of data
 - IUCr CHECKCIF
 - Alerts must be addressed
 - Wrong space group
 - Incomplete data
 - Disorder

- Prepare crystallography tables
 - Use a CIF file once all of the alerts have been addressed
 - Table of crystallographic parameters
 - Formula
 - Formula weight
 - Space group
 - Unit cell

- Volume
- Temperature
- Wavelength
- Refinement values
- Table of bond lengths and angles
 - Must include Estimated Standard Deviation values or esd's
 - $1.555(6) \text{ Å} = 1.555 \pm 0.006 \text{ Å}$

- Deposit CIF to Cambridge Crystallographic Data Centre (CCDC)
 - Acquiring deposition numbers
 - Email CCDC the following information:
 - Author list
 - Title of article
 - Journal
 - CIF
 - Deposition numbers need to be included in your experimental details

- Include in your experimental section:
 - Details on the X-ray Diffractometer
 - Radiation source (Mo or Cu)
 - Wavelength (Mo = 0.71073 Å; Cu = 0.15443 Å)
 - Type of detector (CCD)
 - Sample mounting (Copper pin; crystal covered in silicone oil)
 - Low temperature device (Oxford Cryosystems)
 - Details on structure refinement
 - Programs used for solving, scaling, refining, handling disorder
 - Special information on structure refinement
 - Twinning
 - Disorder

Crystallography Programs

- Apex II
 - Mounting
 - Solving and Refining
 - CIF file and Table
- Mercury
 - Reads CIF files for visualization of crystal structures
 - Measure bond lengths and angles
 - Measure inter- and intramolecular interactions
 - Make pictures
- Encifer
 - Edit CIF files for publication

www.ccdc.cam.ac.uk/free_services

Conclusions

 The quality and meaningfulness of your results is directly dependent on the quality of your sample crystal.

Garbage in = Garbage out

- You can get information from a bad crystal structure, but it will be difficult to publish.
- Spend the time and effort to determine the best method of crystallization before submitting a sample for analysis.
- Consult your crystallographer on preparing and submitting data for publication.
- Don't let your crystals dry out!