

organische

# Introduction to Single Crystal X-ray Diffraction

Practical Aspects of Single Crystal X-ray Crystallography

A DOWN

www.tugraz.atwww.ac.tugraz.at

### **X-ray Diffraction**

**X-ray crystallography** is a method of determining the arrangement of atoms within a crystal.

- Structure of a compound on a molecular level
  - Connectivity
  - Chirality
  - Framework and Pore size
- Bond length and angle parameters
- Interatomic forces that aid in crystallization
  - Solvent inclusion
  - Hydrogen bonding networks
  - π-interactions

2

• Agostic interactions



#### X-ray is a form of electromagnetic radiation





### **X-ray Diffraction**

**X-ray Diffraction** is the observation of X-ray wave interference by crystalline materials.



The probability of this happening is very low; atoms are mostly empty space!!!



### The Crystal

A **crystal** is a solid material whose atoms are arranged in an orderly repeating pattern extending in all three spatial dimensions

Smallest component of a crystal is the **unit cell** 

- Smallest possible **volume** that when repeated, is representative of the entire crystal.
- The unit cell contains the maximum **symmetry** that uniquely defines the crystal structure.

More than one molecule can be found inside the unit cell!!!









### **Unit Cell**







#### 7 crystal systems and 14 Bravais lattices (centering lattice points)







### **Symmetry Elements**

- Identity, 1
- Inversion center,  $\overline{1}$
- Rotation axis, 2,3,4,5,6
- Mirror plane, m
- Screw axis, 2<sub>1</sub>, 3<sub>1</sub>, 3<sub>2</sub>, 4<sub>1</sub> (rotation with a translation)
- Improper rotation, 3,4,5
- Glide planes, a, b, c, n, d (mirror reflection with a translation)

Zbigniew Dauter and Mariusz Jaskolski. J. Appl. Cryst. 2010, 43, 1150–1171





### **Describing order in Space**

| System       | Unit cell<br>dimension | Unit cell<br>angles (°)                   | Characteristic<br>symmetry                              | International<br>notation                | Bravais Lattice<br>(14)                                        | Space<br>Groups<br>(230)                             |
|--------------|------------------------|-------------------------------------------|---------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|
| Triclinic    | a≠b≠c                  | $\alpha\neq \theta\neq \gamma\neq 90$     | Only inversion center                                   | 1, <mark>1</mark>                        | <i>P</i> (Primitive)                                           | P1, P1                                               |
| Monoclinic   | a≠b≠c                  | $\alpha = \gamma = 90, \\ \beta \neq 90$  | Twofold axis<br>or/and mirror<br>plane                  | <b>2</b> , m, <b>2/m</b>                 | <i>P, C</i> (centered, A,<br>B, C)                             | P2 <sub>1</sub> ,<br>P2 <sub>1</sub> /c,<br>C2, C2/c |
| Orthorhombic | a≠b≠c                  | $\alpha = \beta = \gamma = 90$            | Three<br>perpendicular<br>twofold<br>axesor/and mirrors | <b>222</b> , mm2,<br>mmm                 | <i>P, C, I</i> (Body<br>Centered), <i>F</i> (Face<br>centered) | P222 <sub>1</sub> ,<br>Pmma                          |
| Tetragonal   | $a = b \neq c$         | $\alpha = \beta = \gamma = 90$            | Fourfold axis                                           | <b>4</b> , 4, <b>4/m, 422</b>            | Р, І                                                           | P4 <sub>3</sub> , I4                                 |
| Trigonal     | $a = b \neq c$         | $\alpha = \theta = 90,$<br>$\gamma = 120$ | Threefold axis                                          | <b>3, 3, 32</b> , 3m,<br><mark>3m</mark> |                                                                | P3 <sub>2</sub> 12                                   |
| Rhombohedral | a = b = c              | $\alpha = \theta = \gamma \neq 90$        | Threefold axis                                          |                                          | R (Rhombohedral)                                               | R3, R <mark>3</mark> 2                               |
| Hexagonal    | $a = b \neq c$         | $\alpha = \theta = 90,$<br>$\gamma = 120$ | Sixfold axis                                            | <b>6</b> , <del>6</del> , <b>6/m</b>     | Р                                                              | P6 <sub>2</sub> ,<br>P6/mcc                          |
| Cubic        | a = b = c              | $\alpha = \beta = \gamma = 90$            | Four threefold<br>axes                                  | 23, m <mark>3</mark>                     | P, I, F                                                        | F432                                                 |

Only 230 possible ways of arranging identical objects in an infinite three dimensional lattice!!!

**Practical Aspects of Single Crystal X-ray Crystallography** Introduction to Single Crystal X-ray Crystallography



## Real Space vs. Reciprocal space

We do not have a microscope that can directly see atoms!!!

Real Space Crystal Structure Unit cell Electron density Coordinates (x, y, z)



Fourier Transforms **Reciprocal Space** Diffraction pattern Reciprocal lattice Amplitudes and phase Coordinates (h, k, l)



## **Describing order in space**

Parallel planes of atoms intersecting the unit cell define directions and distances in the crystal.



The (200) planes of atoms in NaCl

11

Planes are separated by a distance,  $d_{hkl}$ .

This distance is crucial to determine where diffraction peaks will be observed!!!!!

The planes and the distance between them is what we measure!!



### Miller Indices

**Miller indices** (hkl) are used to identify different planes of atoms. These are the **reciprocal** of the intercepts of the planes that dissect the unit cell with the crystallographic axis





Only when the incident angle ( $\theta$ ) and the scattered angle ( $\theta$ ) are the same will constructive interference will occur

The scattering of an atom is the value for a free electron multiplied by the atomic number – Scattering factor

**Practical Aspects of Single Crystal X-ray Crystallography** Introduction to Single Crystal X-ray Crystallography









**Practical Aspects of Single Crystal X-ray Crystallography** Introduction to Single Crystal X-ray Crystallography





According to Bragg, when  $\ell + \ell = \lambda$ , the waves are in phase, resulting in constructive interference or Diffraction!!!

### $2d\sin\theta = n\lambda$

**Practical Aspects of Single Crystal X-ray Crystallography** Introduction to Single Crystal X-ray Crystallography



## **Applying Bragg's Law – Reciprocal Space**



"Real Space"  $2 d_{hkl} \sin \theta_{hkl} = n\lambda$ Reciprocal Space  $d^*_{hkl} = 2 \sin \theta_{hkl}$  $\lambda$ 



## **Diffraction Pattern – Unit Cell (real space)**





## **Diffraction Pattern**

Each frame has several reflections





#### Each spot is called a reflection

What does each spot tell us?

- *hkl* position of atoms (x, y, z)
  - Where the atoms are
    - Miller Indices and *d*<sub>hkl</sub>
- Intensity ~ number of scattering electrons in the atom
  - What the atom is
    - Scattering Factor

Reciprocal Space!!!



## **Electron Density**





$$\rho_{xyz} = (1/V) \sum_{hkl} |F_{hkl}|_{observed} \cos 2\pi (hx + ky + lz - \alpha_{hkl})]$$

Phase information is more important than the intensity We cannot focus an X-ray like a microscope!!

Direct Methods

• Test random phases for a solution (1000-3000 cycles)

Patterson Methods

Heavy atom method



## **Refinement - Does the model fit the data?**

#### **Data Collection**

Close to 100% completeness

• Most of the reflections in the asymmetric unit

#### **Refinement Residuals**

#### R1 values (below 10 %)

• Measure of how well the refined structure predicts the observed data.

#### wR<sub>2</sub> values (below 20 %)

• Least-squares residual; measure of how intensities calculated for the X-ray reflections match those measured experimentally.



## **Crystallographic Programs**

#### Apex 2

- Collecting data
- Solving and Refining the structure
- Preparing structure for publication
  - Picture (black and white)
  - Crystallographic tables
  - CIF (crystallographic information file)
    - CIF must be checked online and issues fixed
      - PLATON

#### **Endnote or PublCIF**

Preparing CIF file for publication



### **Crystallographic Programs**

#### Mercury

- Reads CIF files for visualization of crystal structures
  - Measure bond lengths and angles
  - Measure inter- and intramolecular interactions

#### Diamond

- Pictures of crystal structures
  - Interactions
  - Frameworks
  - Colorful!



### **Further Information**

#### **Reference Materials**

- "Crystal Structure Determination"
  - Werner Mass
- "Crystal Structure Analysis: Principles and Practice"
  - William Clegg
- "Crystal Structure Refinement: a crystallographer's guide to SHELXL
  - Peter Müller
- "How to read (and understand) Volume A of International Tables for Crystallography: an introduction for nonspecialists"
  - Zbigniew Dauter and Mariusz Jaskolski. J. Appl. Cryst. 2010, 43, 1150–1171





#### **Mounting Samples**

Individual basis

### Refining

- File types (res, ins, cif)
- Issues with completeness
- Issues with refinement

### SADABS

26

Absorption methods

