

Growing X-ray Quality Crystals

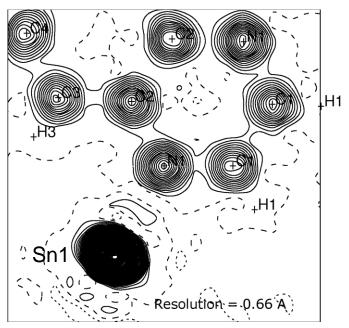
Ana Torvisco

Outline

- X-ray crystallography
- Crystals
 - Quality of crystals
 - Growing crystals
 - General considerations
 - Factors affecting crystal growth
 - Techniques in growing crystals
- Example

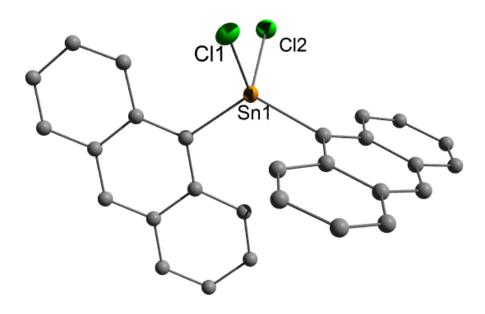
X-ray Crystallography

 X-ray crystallography is a method of determining the arrangement of atoms within a crystal, in which a beam of X-rays strikes a crystal and causes the beam of light to diffract or spread into many specific directions.

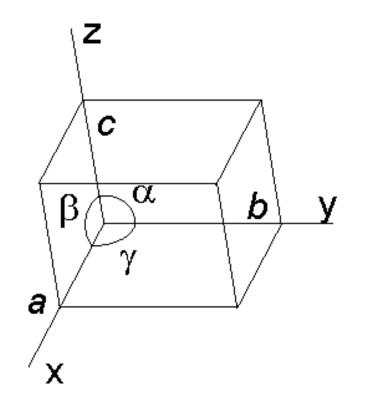


X-ray Crystallography

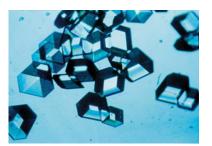
- X-ray crystallography is a method of determining the arrangement of atoms within a crystal, in which a beam of X-rays strikes a crystal and causes the beam of light to diffract or spread into many specific directions.
- From the angles and intensities of these diffracted beams, the density of electrons within the crystal can be mapped.


Heavy atoms = more electrons = areas of higher electron density

X-ray Crystallography


- From electron density maps, the mean positions of the atoms in the crystal can be determined, allowing for the elucidation of a three-dimensional picture of chemical structures.
- Chemical bond distances, angles between atoms, inter- and intramolecular interactions, dimensionality, pore sizes, and other information can also be determined.

- Crystals are three dimensional ordered structures than can be described as a repetition of identical unit cells.
- The unit cell is made up of the smallest possible volume that when repeated, is representative of the entire crystal.



Unit cells are unique for each compound!!

Quality of Crystals

- Good crystals :
 - 0.1 mm to 0.4 mm in size (at least two dimensions)
 - Clear and uniform in color
 - Grow from clear not cloudy solutions
 - Well defined faces and edges
 - Maintain integrity after cutting to an appropriate size
 - Refract polarized light (prism)
 - Shine in direct light
 - Flashlight test
 - Diffract X-rays
 - Discrete spots, well spaced apart, and move with each new frame

Growing Crystals

- Growing crystals is an "art"
 - Time
 - Longer crystallization times improve crystal quality.
 - Trial and error
 - Different techniques must be employed in order to obtain the best quality sample.
 - Crystallization, data collection, and solving
 - Patience
 - Great care and attention must be taken in order to achieve success.
 - Crystalline material will not always be obtained easily!!!!

- Purity of compound
- Solubility of compound
- Physical properties of compound
- Concentration of solution

- Purity of compound
 - Purify your compound before trying to crystallize
 - Precipitation
 - Filtering
 - Recrystallization
 - Recrystallizations should be performed using pure sample
 - Characterized by NMR or IR
 - Recrystallizations should be performed in neat solvents
 - Any impurity in the solvent will affect crystal growth
 - Side products
 - Moisture

- Solubility of compound
 - Understand the solubility properties of your compound
 - Is the compound itself polar or non-polar?
 - Determine a solubility profile for your compound
 - Solubility vs. insolubility in either polar or non-polar compounds
 - Solubility properties of compounds directly affect the crystallization technique that will be employed

- Physical properties of compound :
 - Air and moisture sensitivity
 - Light sensitive
 - Temperature (decomposition upon melting)
- Concentration of solution :
 - Dilute solutions do not crystallize
 - A fair amount of compound is necessary for crystal growth.
 - Supersaturation leads to poor quality crystals
 - Crystals should always be kept in the solution they grew from.
 - Solvents can become trapped in the crystal; if removed, integrity of crystal is compromised.
 - Avoid "drying" the crystals out!!!!!!!!

- Solvent Choice
- Nucleation Sites
- Mechanics
- Time

- Solvent Choice :
 - "Like dissolves like"
 - Moderate solubility is best
 - Gentle heating can be used to fully dissolve a compound in a solvent
 - Avoid highly volatile solvents
 - Choose solvents with rigid geometries
 - Benzene, toluene
 - Choose solvents that can aid in stabilizing interatomic forces necessary for crystallization
 - H₂O and alcohol hydrogen bonding

- Commonly used solvents :
 - Water
 - Diethyl ether
 - THF
 - Methanol
 - Ethanol
 - Dichloromethane
 - Acetonitrile
 - Ethyl acetate
 - Acetone
 - Pyridine
 - DMF
 - DMSO

- Toluene
- Benzene
- Pentane
- Hexane
- Heptane
- Cyclohexane
- All have inherent advantages and disadvantages
- Trial and error!!!!

- Nucleation Sites:
 - Crystals initially form via "nucleating events".
 - This a thermodynamical process.
 - Once a crystallite has nucleated it can grow.
 - Addition of seed crystals can aid in this process.
 - Excess nucleation sites cause smaller average crystal size.
 - Stir bars
 - Insoluble precipitate
 - Ambient dust
 - Filter paper fibers
 - Broken off pipette pieces
 - Make sure that crystals have a clean neat solution to grow in.

Mechanics :

- Crystals grow by the ordered deposition of the solute molecules onto the surface of a pre-existing crystallite.
- Crystal growth is facilitated by the environment changing slowly over time.
 - Solvent evaporation solution concentration
 - Change in temperature
- Keep crystal growth vessel away from sources of mechanical agitation (e.g. vibrations).
- Do not shake or move the sample excessively.
 - Do not check crystals daily.
- Leave samples alone!!

• <u>Time :</u>

- Crystals need time to grow in near equilibrium conditions.
- Crystals that deposit rapidly out of solution are most likely poor formed and thus poor quality.
- It is in your best interest to grow crystals throughout a long period of time.
- Leave samples alone!!

Techniques in Growing Crystals

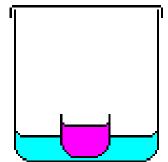
- <u>Reduce Temperature:</u>
 - Dissolve sample in solvent
 - Cool down slowly
 - RT Fridge Freezer
 - Allow sample to remain at a certain temperature range for some time before continuing to cool down
 - In some instances, it is necessary to warm up the solution in order to solubilize the sample.
 - Allow warm solution to come to RT and then continue to slowly cool down the sample
 - If cooling occurs too quickly, small and poor quality crystals will form.

- Slow Evaporation (air stable)
 - Dissolve sample in solvent, and allow solvent to evaporate. This results in a slowly saturating solution and allowing crystal growth.
 - Example:
 - Put sample in a vial, cover the opening with parafilm and poke small holes to allow evaporation
 - Leave sample in an NMR tube
 - Do NOT let the sample dry out!!!!

Techniques in Growing Crystals

- Reduce Volume (air sensitive):
 - Pull slight vacuum on Schlenk flask in order to reduce volume • of solvent.
 - Immediately stop applying vacuum if precipitate appears on • sides of Schlenk flask.
 - Allow precipitate to go back into solution. •
 - If it does not go back into solution, apply moderate heat or add • more solvent.
 - Allow to recrystallize. •
 - Do NOT remove all of the solvent!!!! ٠

- Solvent Layering :
 - Dissolve sample in a solvent.
 - Slowly pipette or syringe a small amount of solvent with opposite polarity creating layers.
 - Stop adding once two visible layers can be seen or interface between layers becomes cloudy.
 - Allow crystals to grow.



Techniques in Growing Crystals

• Vapor Diffusion:

- Dissolve sample in a solvent.
- Place inside a beaker containing a solvent in which the compound is insoluble in
- Cover and allow for diffusion of the outer solvent into your sample.
- Sample solution will become saturated and crystals will precipitate.

Conclusions

- The quality and meaningfulness of your results is directly dependent on the quality of your sample crystal.
 Garbage in = Garbage out
- You can get information from a bad crystal structure, but it will be difficult to publish.
- Spend the time and effort to determine the best method of crystallization.
- There are many solvents and crystal growing techniques available – try everything.

References

Growing Crystals That Will Make Your Crystallographer Happy, Paul D. Boyle, http://www.xray.ncsu.edu/GrowXtal.html

- Crystals and Crystal Growing, Alan Holden and Phylis Singer, Anchor Books-Doubleday, New York, 1960
- The Growth of Single Crystals, R. A. Laudise, Solid State Physical Electronics Series, Nick Holonyak, Jr. *Editor*, Prentice-Hall, Inc., 1970
- X-ray Structure Determination A Practical Guide, 2nd edition, George H. Stout and Lyle H. Jensen, John Wiliey & Sons, New York, 1989.
- *Fundamentals of Analytical Chemistry*, 3rd. edition, Saunders Golden Sunburst Series, Holt, Rinehart and Winston, Philadelphia ,1976.