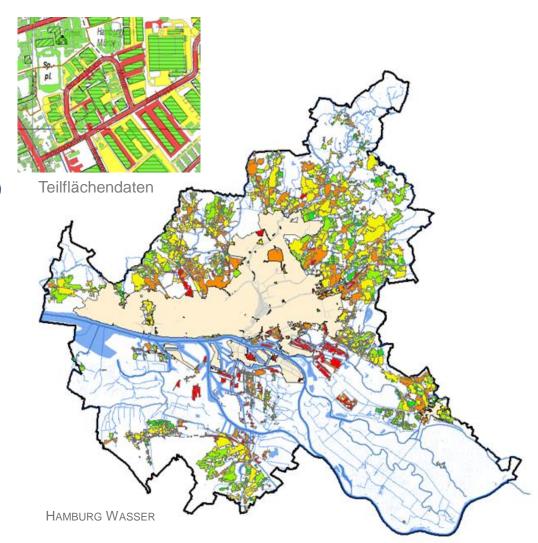

Behandlung von belastetem Niederschlagswasser: Ein Konzept für Hamburg

EINFÜHRUNG

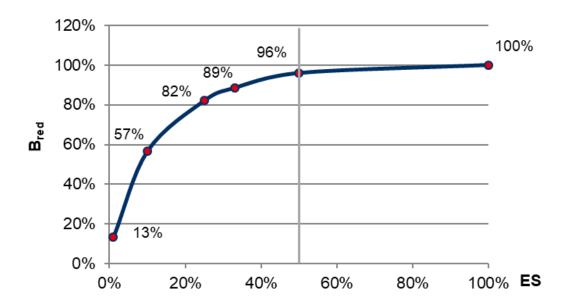
- Die Einleitung von Niederschlagswasser in Gewässer (Trennsystem) verursacht hydraulische Belastungen und einen erheblichen Eintrag von Schadstoffen (Feststoffe, Schwermetalle, Mikroplastik, PAK…).
- Eine der Hauptquellen für Schadstoffe: Straßenabwasser
- Hamburg: Hohe Bedeutung zur Erreichung der Ziele der Wasserrahmenrichtlinie (WRRL)
- Projekt RISA (RegenInfrastrukturAnpassung): Handlungsziel "Weitergehender Gewässerschutz"



BEURTEILUNG DER BEHANDLUNGSBEDÜRFTIGKEIT VON EINLEITUNGEN

 Emissionspotentialkarte (EPK) von Hamburg Wasser

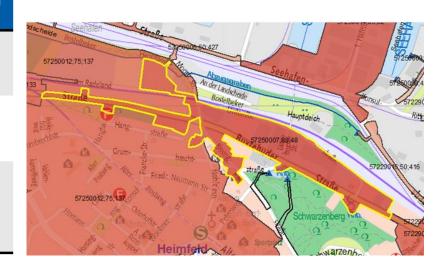
- → Bewertung der Flächen nach Verschmutzungspotentials (Leitparameter AFS₆₃) und Zuordnung zu Regensieleinzugsgebieten (Grundlage: DWA-A 102-2)
- 1.601 Regenwassereinzugsgebiete mit Einleitungsstellen
- Davon 1.381 behandlungsbedürftig
 - + Straßen-Direkteinleitungen (teilweise unbekannt)
- Erfasste Behandlungsanlagen: 84
- → Hoher Handlungsbedarf



EMISSIONSSEITIGE PRIORISIERUNG

Einleitungsstellen	14	138	346	456	691	1.381
Anteil Einleitungsstellen	1%	10%	25%	33%	50%	100%
Anteil B _{red} *	13%	57%	82%	89%	96%	100%

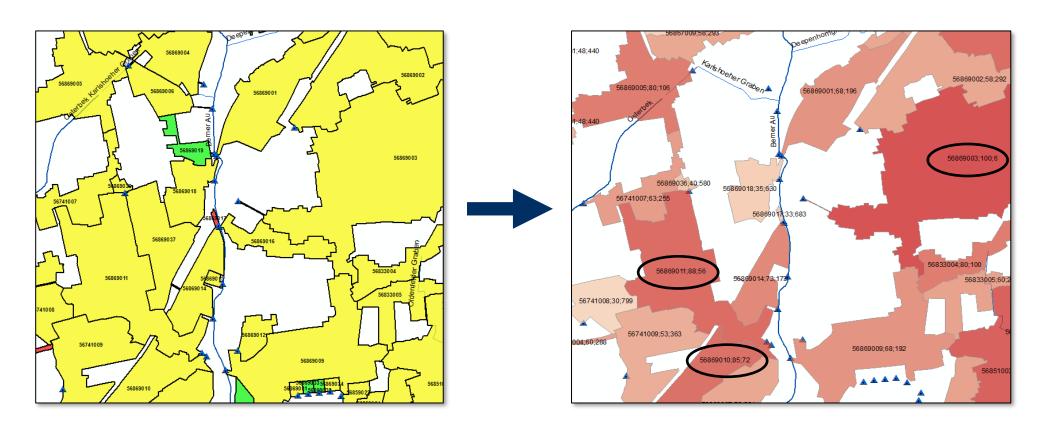
^{*}B_{red}: Die Fracht AFS₆₃ [kg/a], die in einem Einzugsgebiet reduziert werden muss, um emissionsseitige Mindestanforderungen zu erfüllen.


Ungleiche Verteilung der Fracht auf die Einleitungsstellen

Emissionsseitige Priorisierung

EMISSIONSSEITIGE PRIORISIERUNG

Parameter	Beschreibung	Einheit	Gewichtung
B _{red,EZG}	Die Fracht, die in einem EZG reduziert werden muss	[kg/a]	0,5
B _{red,Straße}	Die Fracht, die in einem EZG reduziert werden muss und von Straßen stammt	[kg/a]	0,25
b _{red,Straße}	Die durchschnittliche spezifische Fracht aller Straßen in einem EZG	[kg/(<u>ha·a</u>)]	0,25



B(<u>red_EZG</u>) [kg/a]			B(<u>r</u>	B(red_Str) [kg/a]			b(<u>spez_Str</u>) [kg/ha*a]			RANG
Wert	Punkte	Faktor	Wert	Punkte	Faktor	Wert	Punkte	Faktor	zahl	KANG
3.019	80	0,5	2.025	90	0,25	711	100	0,25	88	48

EMISSIONSSEITIGE PRIORISIERUNG

VERGLEICH: MIT UND OHNE PRIORISIERUNG

BEHANDLUNGSVERFAHREN (BEISPIELE)

Zentral: Retentionsbodenfilter

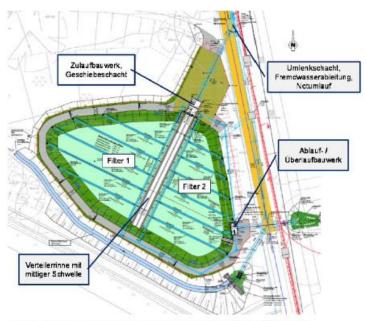
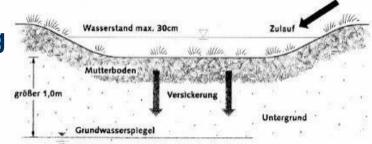


Abbildung 3-1: Lageplan Retentionsbodenfilteranlage Plettenberg

IfS (2017)

<u>Dezentral</u> — Trummenfilter

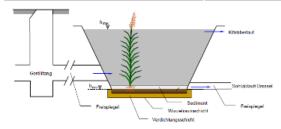
Sedimentationsrohr



Sommer et al. (2016)

Versickerung

www.swschifferstadt.de



REGENWASSERBEHANDLUNGSANLAGEN (RWBA)

ASTRA 2013

Zentrale RWBA

Vorteile	Nachteile
Hohe Reinigungs- leistung	Hoher Flächenbedarf
Wenige Betriebspunkte	Hydraulische Höhe notwendig
Geringer(er) Unterhaltungs- aufwand	Hohe Investitionskosten

RISA Strukturplan 2030

Dezentrale RWBA

	Vorteile	Nachteile		
	Geringer oder kein Flächenbedarf	Geringe(re) Reinigungsleistung		
	Geringere Investitionskosten (Einzelprojekte)	Viele, unübersichtliche Betriebspunkte		
	Gezielte Reinigung belasteter Flächen	Hohe Unterhaltungskosten		
	Eindeutige Zuständigkeiten	Keine/geringe hydraulische Entlastung		

Sommer et al. 2016

KLIMAANPASSUNG - SCHWAMMSTADT

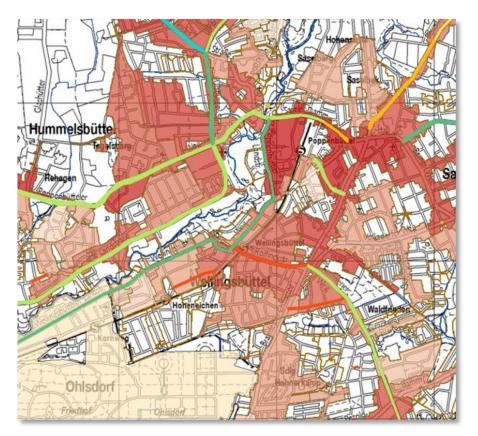
ReStra "Wassersensible Straßenraumgestaltung"

MACHBARKEITSSTUDIEN

WAS VERSTEHEN WIR UNTER MACHBARKEITSSTUDIEN (MBS)?

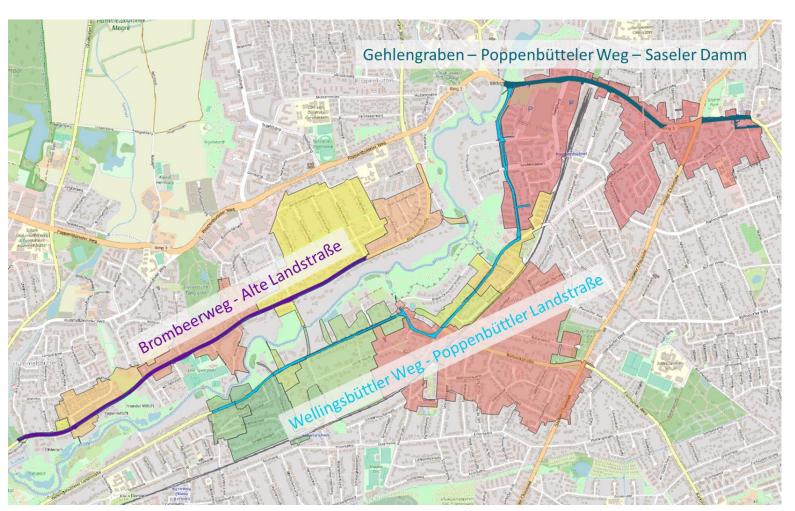
Eine MBS ist eine Untersuchung zu Möglichkeiten der Regenwasserbehandlung und -rückhalt in einem **definierten Bereich** unter **gegebenen Randbedingungen**.

Die Untersuchung soll insbesondere folgendes leisten:


- Defizitanalyse: Notwendigkeit von Behandlung und Rückhalt
- Machbarkeit: Welche Varianten sind umsetzbar?
- Vor- und Nachteile: Welche Varianten weisen im Hinblick auf die wasserwirtschaftlichen Ziele die beste Kosten-Nutzen-Relation auf? Als Maß für die Wirtschaftlichkeit wurde hierbei das Kostenäquivalent €/AFS63 eingeführt.
- → Entscheidungsgrundlage, welche Variante umgesetzt wird.

INTEGRATION IN PLANUNGSPROZESSE

Straßenbaumaßnahmen


- Geeigneter Zeitpunkt zur Realisierung von Maßnahmen (Synergieeffekte)
- Identifikation von Maßnahmen, an denen eine übergeordnete, integrierte Betrachtungsweise sinnvoll erscheint
- Rechtzeitige Veranlassung von Machbarkeitsstudien
- Herausforderung: Integration von Straßenbau und Wasserwirtschaft

HAMBURG WASSER und LSBG

BEISPIEL: MITTLERE ALSTER

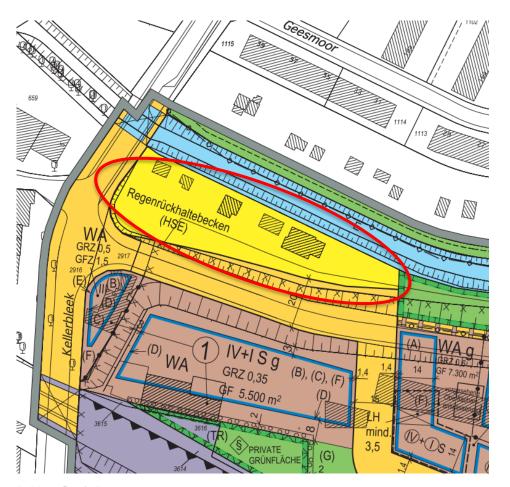
Betrachtungsgebiet:

12 Regenwasser -Einzugsgebiete3 Straßenbaumaßnahmen

→
Gewässerabschnittsbezogene
Machbarkeitsstudie

IfS 2019

BEISPIEL: MITTLERE ALSTER


Szenario	Anzahl Anlagen	Wirkungs- grad gesamt [%]	Investitions- kosten [€]	Laufende Kosten [€/a]	Kosten- equivalent [€/kg AFS63]
Zentral	3	41	4.000.000	30.000	7,23
Dezentral	37	11	2.600.000	75.000	26,77

INTEGRATION IN PLANUNGSPROZESSE

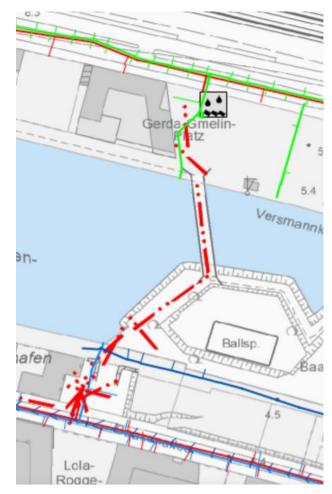
Bebauungspläne / Stadtplanung

- Geeigneter Zeitpunkt zur Sicherung von Flächen
- Wasserwirtschaftliche Betrachtung, um Flächen an prioritären Einleitungsstellen zu sichern
- Herausforderung: Belastete Flächen liegen oft außerhalb des Planungsgebietes
- Rechtzeitige Integration in Planung

B-Plan Groß-Borstel 25, Hamburg

INSTITUTIONELLER RAHMEN UND FINANZIERUNG

- Eindeutige Klärung von Zuständigkeiten
- Etablierung und Optimierung von Prozessen und Abläufen
- Ermittlung von Finanzierungsbedarfen für unterschiedliche Dienststellen
 → Grundlage, um Mittel im Haushalt einplanen zu können



www.pixabay.com

DATENINFRASTRUKTUR: NEWIS

- Die Zuständigkeit sowohl für Entwässerungsleitungen als auch für Regenwasserbehandlungsanlagen ist in Hamburg auf verschiedene Dienststellen verteilt
- → Keine vollständige, zentrale Datenführung
- → Aufbau eines digitalen, zentralen Katasters für (Straßen-) Entwässerungselemente und RWBA: NEwIS -Niederschlagsentwässerungs-Informationssystem
- Erfassung von Daten im Bestand (Digitalisierung von Plänen und weiteren Unterlagen)
- Fortlaufende Pflege und Aktualisierung

FHH-Atlas

INSTANDHALTUNG - BETREIBERMODELL

- Mit der Herstellung von vielen RWBA steigt die Bedeutung des Betriebs und der Instandhaltung
- Aufbau eines zentralen Betreibermodells
- → Unterhaltung aller RWBA der FHH durch Hamburg Wasser oder zertifizierte Fachfirmen
- → Zentrale Mittelsteuerung und Datenführung
- → Erhaltungsmanagement Hamburg

ZUSAMMENFASSUNG

 Die Einleitung von Niederschlagswasser aus der Trennkanalisation hat negative Auswirkungen auf die Gewässer

 In Hamburg müssen eine Vielzahl an Regenwasserbehandlungsanlagen (RWBA) gebaut und betrieben werden

- Konzept Niederschlagswasserbehandlung: Mit allen betroffenen Dienststellen abgestimmtes Konzept für die Finanzierung, Herstellung und Unterhaltung von öffentlichen RWBA
- **Bestandteile** (u.a.): Priorisierung von Einleitungen, Koordination und Durchführung von Machbarkeitsstudien, Klärung von Zuständigkeiten, Aufbau eines zentralen Katasters und Betreibermodells
- Beitrag, um die Ziele der Wasserrahmenrichtlinie (WRRL) zu erreichen

Priorisierung

Rimmellind

Odden

Wartung

