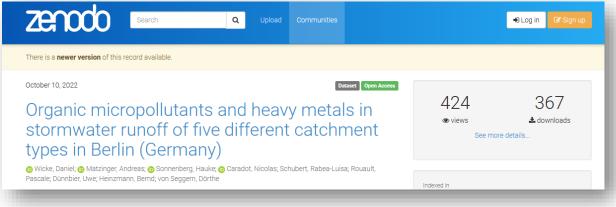
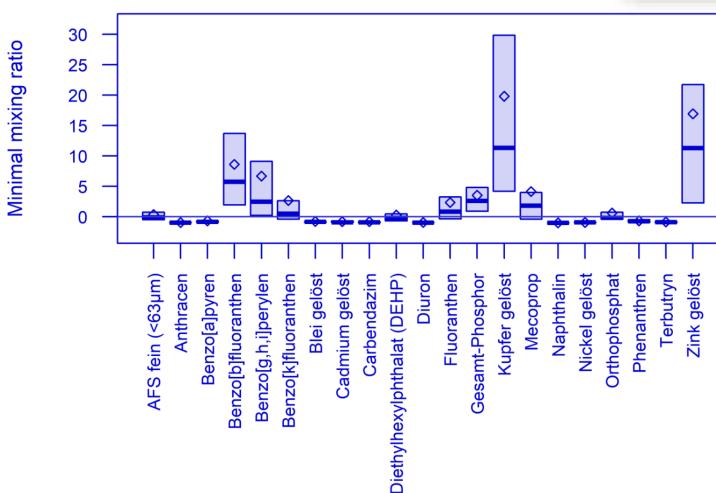

Ein immissionsbasiertes Bewertungstool zur Berechnung des Potentials und zur konkreten Planung des Anschlusses urbaner Flächen an die Trennkanalisation

Wieviel Trennkanalisation verträgt ein Gewässer?

Vor- und Nachteile der Trennkanalisation


- Entlastung der Kläranlage
- Keine Mischwasserüberläufe
- DezentraleRegenwasserableitung möglich



- Hydraulischer Stress in kleinen Fließgewässern
- RegelmäßigerSchadstoffeintrag inOberflächengewässer

Schadstoffauswahl

A) Beschreibung des Ist-Zustands

A) Beschreibung des Ist-Zustands

B) Semi-Quantitative Beschreibung der Schadstoffquellen

Konzentration im Regewasserabfluss

< Grenzwert

1 bis 5-facher Grenzwert

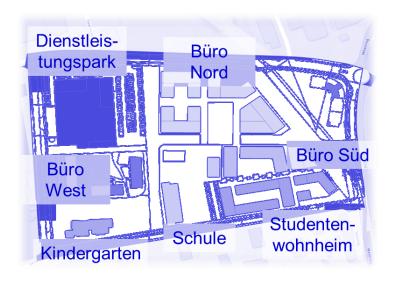
5 bis 10-facher Grenzwert

> 10-facher Grenzwert

A) Beschreibung des Ist-Zustands

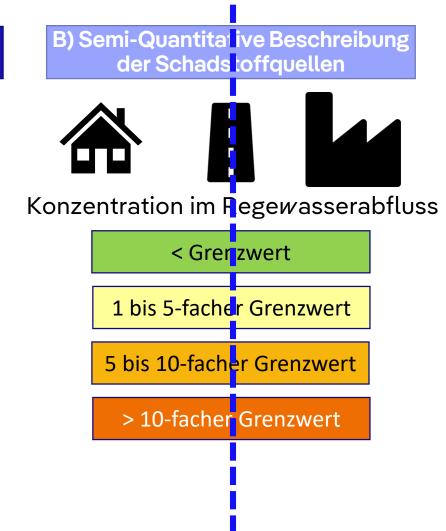
B) Semi-Quantitative Beschreibung der Schadstoffquellen

Konzentration im Regewasserabfluss

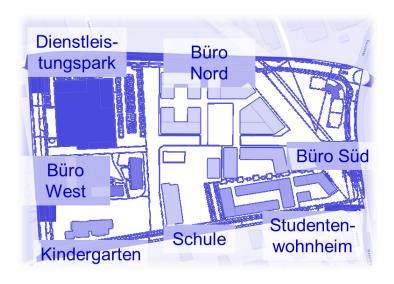

< Grenzwert

1 bis 5-facher Grenzwert

5 bis 10-facher Grenzwert


> 10-facher Grenzwert

C) Berechnung von Planungsszenarien



A) Beschreibung des Ist-Zustands

C) Berechnung von Planungsszenarien

Problemerfassung

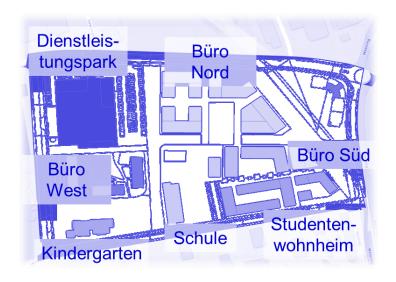
Problemlösung

A) Beschreibung des Ist-Zustands

Grobe Einteilung in Stadtstrukturtypen

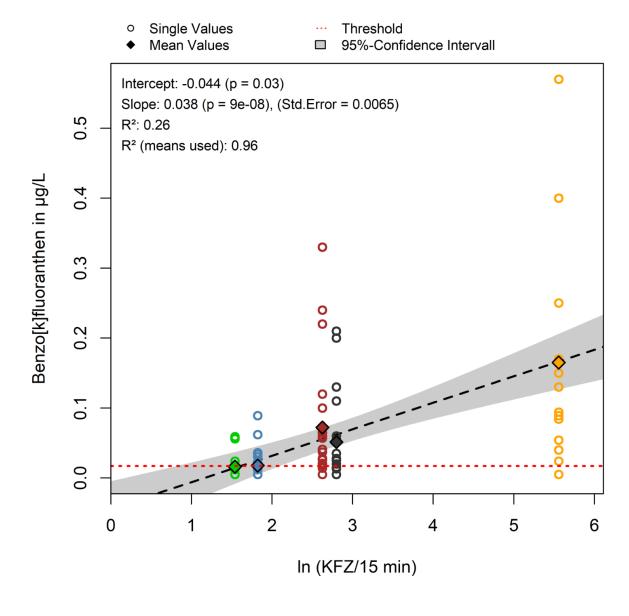
B) Semi-Quantitative Beschreibung der Schadstoffquellen

Konzentration im Regewasserabfluss

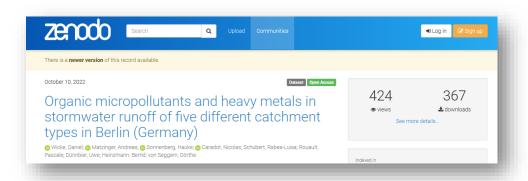

< Grenzwert

1 bis 5-facher Grenzwert

5 bis 10-facher Grenzwert


> 10-facher Grenzwert

C) Berechnung von Planungsszenarien



Flächenscharfe Einteilung

Quantifizierung der Schadstoffquellen – Bsp. PAK

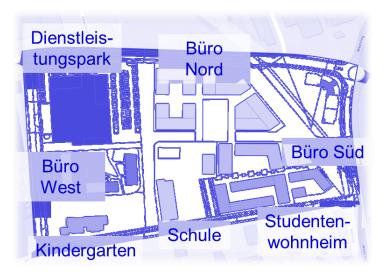
- Regenwasserabfluss aus fünf typischen Stadtstrukturtypen (OgRe-Datensatz)
- Schadstoffkonzentrationen kombiniert mit
 - Verkehrsdichte,
 Straßenlängen, Dacharten
- Bsp. PAK: klarer Zusammenhang mit Verkehrsdichte (im Mittel)

Indentifizierte Schadstoffquellen

Schadstoff	Verkehrsrate < 300 KFZ/d	Verkehrsrate 300 - < 2000 KFZ/d	Verkehrsrate 2000 - < 15 000 KFZ/d	Verkehrsrate > 15 000 KFZ/d	Zinkdach	Kupferdach	Bitumen, Gründach, Kiesdach	Dach Allgemein	Hofflächen	Gebäude
AFS (< 63 μm)	1	1	1	1	0	0	0	0	0	0
PAK	1**	2	3	3	1**	1**	1**	1**	1**	1**
DEHP	0	1	1	1	0	0	0	0	0	0
Nährstoffe	3	3	1	0	0	0	0	0	0	0
Zink	1	1	1	1	3	0	0	0	0	1*
Kupfer	2	2	2	2	0	3	0	0	0	3*
Mecoprop	0	0	0	0	0	0	3*	0	0	0

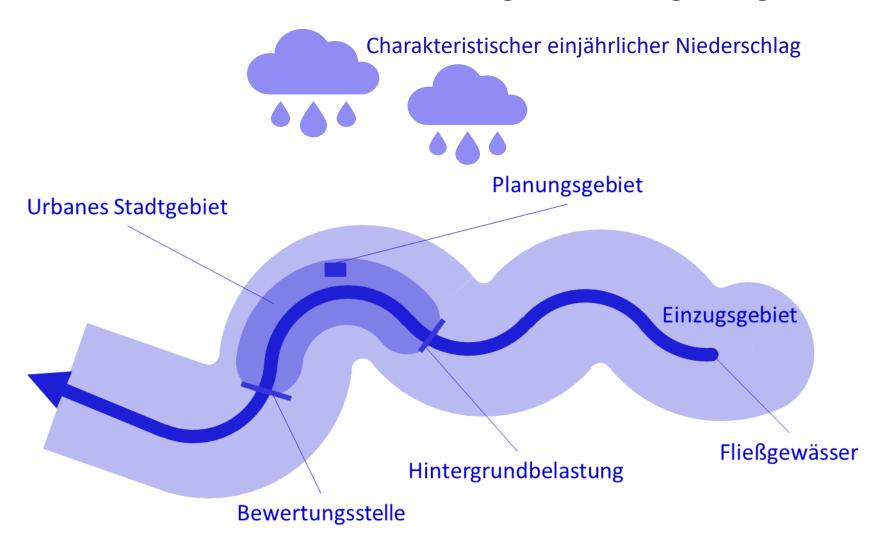
^{*} Kann auf O gesetzt werden, wenn Verwendung ausgeschlossen

^{**} Kann auf 0 gesetzt werden, wenn nicht in verkehrsreicher Umgebung

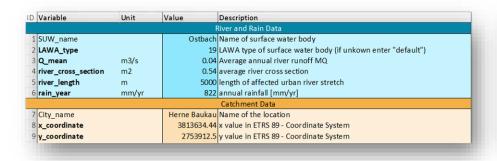

Berechungsschritte des Bewertungstools

A) Beschreibung des Ist-Zustands

Grobe Einteilung in Stadtstrukturtypen


C) Berechnung von Planungsszenarien

Flächenscharfe Einteilung


Bewertungsansatz umgesetzt als R-Paket

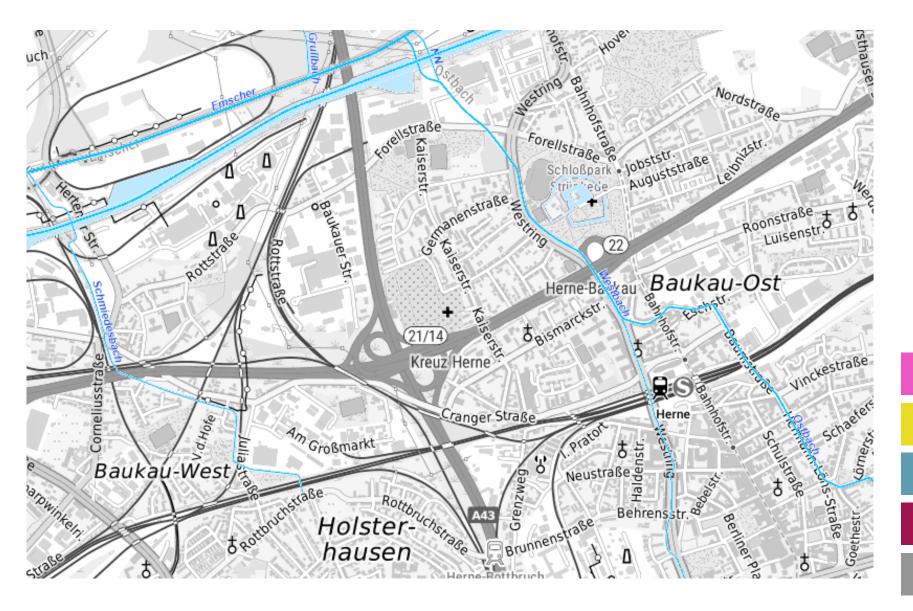
Angelehnt and DWA-M 102-3 (Grundsätze zur Bewirtschaftung und Behandlung von Regenwetterabflüssen ...)

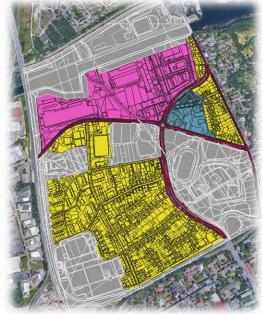
Dateneingabe zur Berechnung des Ist-Zustands

Dateneingabe über Excel-Datei mit drei Tabellenblättern

landuse	fD	proportion	separate_sewer
residential_city	0.75	0.25	0
residential_suburban	0.71	0.4	0
commercial	0.73	0.1	0
main_road	0.94	0.03	0
no_runoff		0.22	

		Background
Substance	Unit	Concentration
Anthracen	ug/L	0.01
Cadmium gelöst	ug/L	0.01
Carbendazim	ug/L	NA
Diethylhexylphthalat (DEHP)	ug/L	NA
Mecoprop	ug/L	NA
Phenanthren	ug/L	0.015
Diuron	ug/L	NA


Fließgewässereigenschaften


- Stadtstrukturtypen
- Anschlussgrad

Hintergrundbelastung

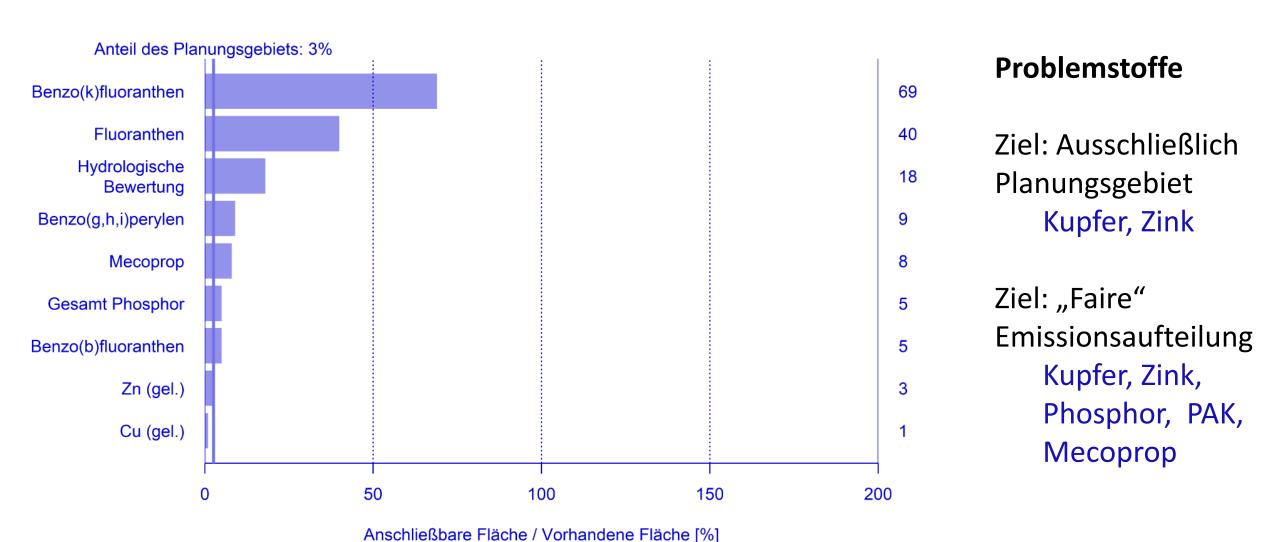
- Jahresniederschlag
- Einzugsgebietseigenschaften
- Stadt- und Planungsgebiet

Anwendung in Herne Baukau

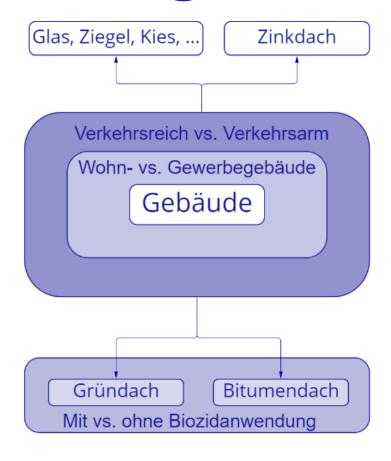
Gewerbegebiet

Wohngebiet Stadtrand

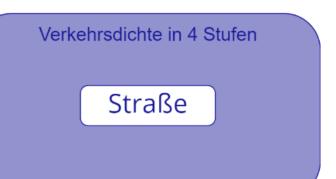
Wohngebiet Innenstadtbereich

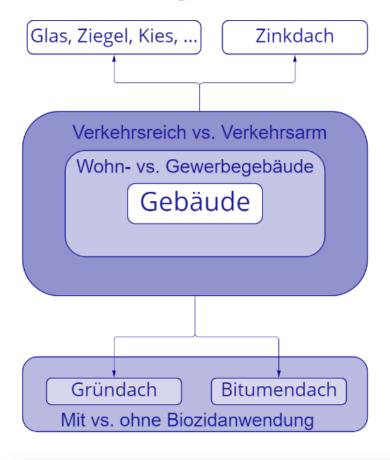

Hauptverkehrsstraße

Nicht Abflusswirksam


A) Beschreibung des Ist-Zustands

- 1. Durchschnittliche Schadstoffkonzentration im Regenwasserabfluss
 - Mittelwerte oder 95. Quantil (OgRe-Datensatz)
- 2. Resultierende Schadstoffkonzentration im Gewässer im Starkregenfall
 - Vereinfachte Annahme: Gewässerabschnitt im Stadtgebiet als perfekt durchmischter Reaktor
- 3. Berechnung einer maximal anschließbaren Fläche und einer maximal einleitbaren Fracht
 - Optimierungsalgorithmus zur numerischen Lösung
- 4. Vergleich der anschließbaren Fläche pro Schadstoff mit der vorhandenen Abflusswirksamen Fläche im Stadtgebiet
 - → Identifikation der Problemstoffe

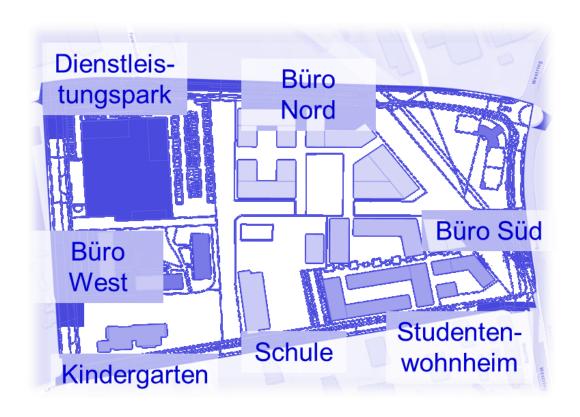

Ist-Zustand Herne Baukau


Dateneingabe zur Berechnung der Planungszenarien

Dateneingabe zur Berechnung der Planungszenarien

Verkehrsreich vs. Verkehrsarm

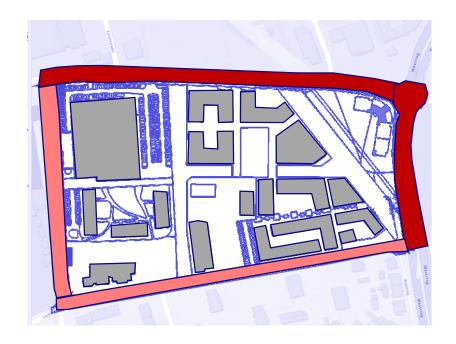
Komplett- vs. Teilversiegelt


Hof

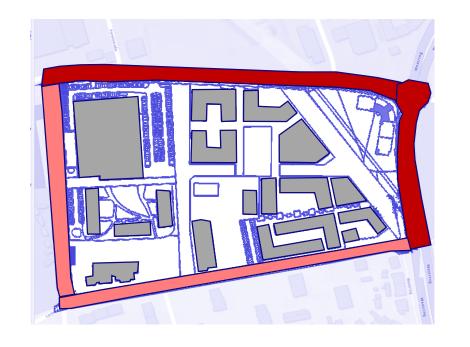
Verkehrsdichte in 4 Stufen

Straße

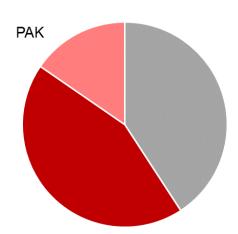
							Treatment	in % (either ave	age removal or are	a with complete rem	ioval)
f_id primary_function	characaterisation 1	characaterisation 2	characaterisation 3	fD	area_m2	pah	nutrients	heavy metals	biocides	suspended_solids	phthalate
1 Residential Building	In high traffic area	Zinc roof		1	0	0	0	C	0	0	
2 Residential Building	In high traffic area	Green roof	With biocides / unknown	0.5	0	0	0	C	0	0	

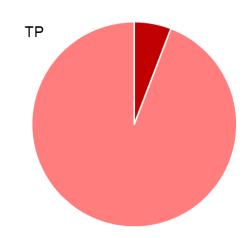

Beispiel Herne Baukau

- Erstellen unterschiedlicher Anschlussszenarien
 - Gebäude, Straßen, Höfe
- 2. Berechnung der Schadstofffracht aus dem Planungsbeit
- 3. Vergleich mit toleriebarer Schadstofffrachten

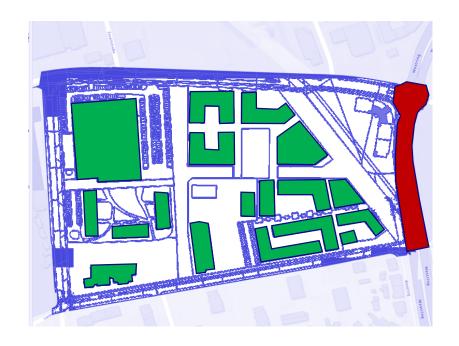

Ziel: "Faire" Emissionsaufteilung

Szenario		Benzo(b)-	Fluor-	Gesamt	•		Zink (gel)		
Nr	Dachflächen	Straßen	fluoranthen	anthen	Phosphor	(gel)	Mecoprop	Zilik (gei)	
1	Bitumen	angeschlossen	3198%	551%	1456%	6946%	3205%	658%	




Ziel: "Faire" Emissionsaufteilung

Szenario		Benzo(b)-	Fluor-	Gesamt	Kupfer	Mecoprop	Zink (gel)		
Nr	Dachflächen	Straßen	fluoranthen	anthen	Phosphor	(gel)	Mecoprop	Zilik (gei)	
1	Bitumen	angeschlossen	3198%	551%	1456%	6946%	3205%	658%	



Ziel: "Faire" Emissionsaufteilung

	Szenario		Benzo(b)-	Fluor-	Gesamt Kupfer		Mecoprop	Zink (gel)	
Nr	Dachflächen	Straßen	fluoranthen	anthen	Phosphor	(gel)	Mecoprop	Zilik (gei)	
1	Bitumen	angeschlossen	3198%	551%	1456%	6946%	3205%	658%	
2	Begrünt	Nur östliche Straße angeschlossen	354%	89%	117%	3040%	1782%	174%	

Ziel: "Faire" Emissionsaufteilung

	Szenario		Benzo(b)-	Fluor-	Gesamt	Kupfer	Mecoprop	Zink (gel)
Nr	Dachflächen	nflächen Straßen fluoranthen anthen		Phosphor (gel)		Mecoprop	Zilik (gei)	
1	Bitumen	angeschlossen	3198%	551%	1456%	6946%	3205%	658%
2	Begrünt	Nur östliche Straße angeschlossen	354%	89%	117%	3040%	1782%	174%
3	Begrünt ohne Herbizide und Kupferteile	Nur östliche Straße angeschlossen, über RBF	75%	34%	97%	159%	0%	130%

Reduzierung der Schadstoffkonzentration durch Retentionsbodenfilter:

■ PAK: 99%

Phosphor: 93%

Schwermetall: 91,5%

Mecoprop: 59%

Ziel: "Faire" Emissionsaufteilung

	Szenario		Benzo(b)-	Fluor-	Gesamt	Kupfer	Mecoprop	Zink (gel)	
Nr	Dachflächen	Straßen	fluoranthen	nthen anthen Phosphor		(gel)	Mecoprop	Zilik (gei)	
1	Bitumen	angeschlossen	3198%	551%	1456%	6946%	3205%	658%	
2	Begrünt	Nur östliche Straße angeschlossen	354%	89%	117%	3040%	1782%	174%	
3	Begrünt ohne Herbizide und	Nur östliche Straße angeschlossen,							
	Kupferteile	über RBF	75%	34%	97%	159%	0%	130%	

Ziel: Ausschließlich Planungsgebiet

	Szenario		Benzo(b)-	Fluor-	Gesamt	Kupfer	Mecoprop	Zink (gel)	
Nr	Dachflächen	Straßen	fluoranthen	anthen	Phosphor	(gel)	Mecoprop	Zilik (gei)	
1	Bitumen	angeschlossen	65%	11%	30%	141%	65%	13%	
2	Begrünt	Nur östliche Straße angeschlossen	7%	2%	2%	62%	36%	4%	
3	Begrünt ohne Herbizide und Kupferteile	Nur östliche Straße angeschlossen, über RBF	2%	1%	2%	3%	0%	3%	

Zusammenfassung und Ausblick

Das immissionbasierte Bewertungstool

- berechnet eine maximal einleitbare Fracht aus einem gesamten Stadtgebiet sowie einem Planungsgebiet und identifiziert kritische Schadstoffe
- sensibilisiert auf Schadstoffquellen
- kann Planungsszenarien berechnen und vergleichen
- ist online verfügbar auf github (https://github.com/KWB-R/r2q)
- wird im Rahmen des Projekts AD4GD weiterentwickelt
 - Auf kleine stehende Gewässer / einfache Integration weiterer Schadstoffe / ortspezifische Anpassungen der Regenwasserabflussqualität

Vielen Dank für die Aufmerksamkeit!

Malte Zamzow malte.zamzow@kompetenz-wasser.de

Wolfgang Seis (Kompetenzzentrum Wasser Berlin)
Birgitta Hörnschemeyer (IWARU, FH Münster)
Andreas Matzinger (Kompetenzzentrum Wasser Berlin)

