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A B S T R A C T

The present work deals with cross-links in collagenous tissues and proposes a planar continuum
model for large strains to mechanically characterize, for example, the well-known stiffening
effect associated with the presence of these cross-links. A key novelty of the paper is the
consideration of dispersed fibers connected by randomly distributed cross-links. The model is
essentially based on two mechanisms: (i) a fiber dispersion-induced cross-link dispersion and
(ii) a fiber-independent cross-link dispersion connecting two arbitrary parallel fibers of the
sample space. Within the framework of the generalized structure tensors, we derive appropriate
invariants that enter the stored-energy function, taking into account the stiffness and relative
orientation of the cross-links and the cross-link-fiber interaction. To illustrate the power of
the proposed model, we first consider uniaxial tension and simple shear. We investigate
the influence of different cross-link configurations on the stress response. In particular, we
are interested in simple shear and the sign of the normal stress perpendicular to the shear
planes, which is referred to as the Poynting effect. We show that the cross-links have a
significant impact on the normal stress considered. This may provide a deeper insight into
the microstructural mechanisms in semi-flexible biopolymer gels that are responsible for the
tendency, in simple shear, of the top and bottom faces to approach each other. Finally, we
investigate the Poynting effect that occurs in a circular hollow cylinder under pure torsion,
i.e. how the axial normal force correlates with the cross-linked fibrous microstructure of the
specimen.

1. Introduction

The mechanical behavior of structural tissues is mainly determined by collagen, an important and abundant protein in the
ody. Collagen fibers are distributed differently in fibrous tissues, e.g., they are dispersed in arterial walls and nearly parallel in
endons, and can bear considerable mechanical loads, see Fratzl (2008). The hierarchic structure of collagen in particular provides
ibrous tissues high toughness and resistance to tensile forces. Amino acids are arranged in a triple helix and form tropocollagen
TC) molecules. Axially staggered arrays of these molecules form collagen fibrils. Within these, TC molecules are connected by
ntermolecular cross-links, which can be categorized into enzymatic and non-enzymatic cross-links, see the review articles of Eyre et al.

(1984) and Snedeker and Gautieri (2014) whereby the former also provides a chemical background. The origin of non-enzymatic
cross-links lies in the reaction of glucose and collagen, through which the advanced glycation end products (AGEs) are built. It is
known that this type of cross-links either link neighboring molecules or affect individual proteins. With increasing age and diabetes,
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the density of these non-enzymatic cross-links in collagen increases over the whole length of the proteins, see, e.g., the review article
of Zieman and Kass (2004). This is supposed to change the mechanical behavior of collagenous tissues in the direction of increasing
stiffness and brittleness. We also refer to Snedeker and Gautieri (2014) and the references contained therein. On the other hand,
cross-links can also be formed by an enzymatic reaction triggered by the protein lysyl oxidase. The result is an immature divalent
bond between TC molecules. In contrast to non-enzymatic cross-links, enzymatic cross-links connect TC molecules at their ends. As
the tissue ages, these divalent cross-links undergo a further reaction to form a trivalent mature bond that connects three TC molecules
and increases collagen interconnectivity and structural stability, see Bailey (2001) for a review. Under a certain monothonic load
or with a sufficient number of load cycles, existing cross-links can break and sliding between the filaments is possible, see Willett
et al. (2010) and Herod et al. (2016). Normally the cross-links in biomaterials are much weaker than the fibrous structure itself and
therefore rupture before the fibers, see Fantner et al. (2006). After unloading, however, a recovery process may take place in the
sense that cross-links can be re-established, see Harrington et al. (2009).

In general, the presence of cross-links has a very strong influence on the mechanical behavior of collagenous tissues. High cross-
ink densities lead to a stronger or more brittle deformation behavior of the tissue due to suppressed intermolecular slip. On the
ther hand, collagen fibrils, which tend to be poorly cross-linked, show a weaker tensile strength, a reduced tangent modulus and a
issipative deformation character. We refer to the works of Buehler (2008), Depalle et al. (2015) and Yoshida et al. (2014) and the
eview article of Eekhoff et al. (2018). The influence of the cross-link density on the fracture behavior of fibrous tissues is studied
y Svensson et al. (2013). As mentioned above, there is strong evidence that the number of cross-links increases with age, which
eads to a change in the biomechanical properties, see the review article of Barodka et al. (2011) on age-related stiffening of the
rterial walls or Willett et al. (2010) for a study on tendons. For the chemical mechanisms that lead to an increase in the amount
f cross-links between collagen fibrils, we refer to Fujimoto (1982) and Mikŝík and Deyl (1991).

Due to the properties mentioned, the mechanics of cross-links has gained a lot of interest also from a theoretical and modeling
oint of view. In Uzel and Buehler (2011) a fully atomistic model was set up that investigates the influence of covalent cross-links
etween two type I collagen molecules. The authors come to the conclusion that the influence of cross-links is rather minor for
mall deformations, but not negligible for large deformations, i.e. the presence of cross-links leads to a significant strengthening, see
lso Kwansa et al. (2016). In addition, a simple rheological model is proposed in Uzel and Buehler (2011) that is able to reproduce
he results of their molecular dynamics simulation, i.e. the elastic, slippage and delayed elastic regimes. Another computational
odel on the molecular level was recently presented by Shabbir et al. (2019). There, the tensile deformation behavior of parallel

ibers, which are connected by two- and three-fold coordinated cross-links, is investigated. It was found that a higher coordination
f the cross-links has a positive influence on the strength of the overall fibrous system. In order to analyze the strain stiffening of a
iopolymer network in the event of large deformations, Žagar et al. (2015) created a computational random network model from
ross-linked fibers. By subjecting the representative volume element to simple shear, they observe the development of localized
aths of (highly) axially stressed fibers and cross-links and relate the stiffening of the network to two mechanisms that dominate at
arge strains, namely their straightening and reorientation of these paths.

Lin and Gu (2015) has also created a model with randomly distributed cross-linked fibers and concluded from their computational
ensile tests that an increased cross-link density has a higher influence on the overall stiffness than the cross-link stiffness, see
lso Chen et al. (2017). The dynamic nature of cross-links in the sense of a changing density in the fibrous material was taken into
ccount in Åström et al. (2008), whereby the cross-links in the random network model can break and reform when the segments come
lose enough to one another. It is stated that this rebinding forms bunches of tensile-loaded fibers, which leads to a strain stiffening.
s an alternative to these network models, Sáez et al. (2014) formulated a continuum-based approach with an isotropic contribution
f the cross-links connecting parallel fibers in carotid arteries. The amount of cross-links is controlled by a scalar parameter which
s included in the anisotropic stored-energy function, the terms of which model a phase transition of the fiber-related stored energy
owards an energy that is associated with cross-links.

In contrast to this, the recent 3D continuum model from Holzapfel and Ogden (2020a) accounts for cross-links via additional
tructural directors. There, the influence of the cross-link stiffness, the cross-link orientation and the cross-link density on the overall
echanical response of the fibrous tissue for the case of uniaxial deformation and simple shear is studied. The work of Holzapfel and
gden (2020b) extends this model to a collagen fiber damage formulation with intact cross-links and is embedded in the framework
f pseudo-elasticity in the sense of Ogden and Roxburgh (1999). The limitation of these continuum-based models is the assumption
f perfectly aligned fibers that are connected by cross-links. The purpose of this paper is to develop a large-strain continuum model,

which now considers dispersed cross-links and dispersed fibers that are connected by these cross-links. The formulation is essentially
based on the deliberation of

(i) a fiber-independent dispersion of cross-links that connect two parallel dispersed fibers and
(ii) a cross-link dispersion which is induced by the dispersion of the fibers.

The presented hyperelastic formulation is embedded within the framework of Generalized Structure Tensors (GST) in the sense
of Advani and Tucker III (1987).

One aspect that will be examined in detail in this work concerns the role of cross-links in simple shear deformation. Janmey et al.
(2007) have found experimentally that semi-flexible biopolymer gels show a tendency to decrease the distance between parallel
shear planes, or in other words, they exhibit a normal tensile stress in the direction perpendicular to the shear planes. This behavior
is in contrast to rubber, in which the shear planes have the tendency to spread apart (expand), which is generally known as the
positive Poynting effect, see Truesdell and Noll (2004). The negative (or inverse) Poynting effect in biopolymers observed by Janmey
et al. (2007) is supposed to have its origin in network-connecting filaments, which possess a nonlinear force–extension relationship
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and thus lead to a net force perpendicular to the shear planes. Conti and MacKintosh (2009) computationally investigated this
inverse normal stress effect in a random network model.

From a mathematical and elasticity-theoretical point of view, the sign of the considered normal stress is understood to be
overned by material inequalities (e.g., the well-known Baker–Ericksen inequality), which are ultimately formulated for isotropy,
ee Mihai and Goriely (2011) and the numerical study of Mihai and Goriely (2013), which also discusses generalized shear
eformations. Furthermore, it should be noted that in the case of incompressibility, the additional constraint for determining the
agrange multiplier has a decisive influence on the normal stress behavior as pointed out in Horgan and Murphy (2010). Hence,
compressible formulation for isochoric deformation of simple shear is proposed therein. An analysis of the Poynting effect for

ransversely isotropic materials undergoing simple shear deformation is given in Horgan and Murphy (2011, 2017) and Destrade
t al. (2015).

Note that simple shear is related to the inhomogeneous problem of pure torsion in the sense that locally these two deformations
are equivalent, see, e.g., Truesdell and Noll (2004). However, as, e.g., pointed out in Horgan and Murphy (2017), torsion produces
a characteristically different Poynting effect than that observed in simple shear. Therefore, within the scope of this work, we also
investigate the axial normal force generated in a cylindrical specimen under pure torsion, which consists of a cross-linked fibrous
material.

The above-mentioned aspects are discussed in detail in the following sections. The novel contributions of the presented work are

• a continuum mechanical model for plane strain deformations, which takes into account both the fiber dispersion and a
statistical orientation distribution of fiber-connecting cross-links through the two geometrical mechanisms (i)–(ii) mentioned
above,

• the specification of the proposed model for uniaxial extension, simple shear and pure torsion and
• a detailed discussion of the positive/negative Poynting effect in simple shear and pure torsion and how this effect is related

to the assumed fiber-cross-link microstructure of the solid.

The paper is organized as follows: In Section 2 we set up the model and start with the description of the microstructure by introducing
suitable structure directors. The kinematic basis is the usual multiplicative split of the deformation gradient into volumetric and
isochoric parts, but only applied to the isotropic part of the stored-energy function. From a physical point of view, this ‘incomplete’
split for anisotropy is preferable over the usual ‘complete’ multiplicative split, which uses the decomposition of the deformation
gradient for each part of the stored-energy function, see Sansour (2008). Within the GST approach, we define suitable invariants
that take into account the effect of cross-links and the influence of the fiber-cross-link interaction. Finally, we specify the proposed
model by assuming a von Mises distribution of the fibers and a von Mises distribution of the cross-links for a fixed fiber direction.
In Section 3 we apply the framework to two homogeneous deformation modes, namely uniaxial extension and simple shear, and
show the influence of the cross-link dispersion on the stress response. For the latter deformation mode, we will discuss in detail the
role of the cross-links concerning the positive/negative Poynting effect, i.e. how the sign of the normal stress under consideration
changes depending on the cross-links. Finally, in Section 4 we investigate the Poynting effect in a circular hollow cylinder under
pure torsion, i.e. the axial normal force that must occur to sustain the deformation, and its relation to the cross-linked fibrous
microstructure.

2. Continuum mechanical framework

2.1. Multiplicative kinematics

We consider a stress-free reference configuration 0 ⊂ R3 embedded in Euclidean space and denote with 𝝋∶ 0 → R3 the
nonlinear deformation map. The vector-valued function 𝝋 maps the points 𝑿 ∈ 0 of the reference configuration to the points
𝒙 = 𝝋(𝑿) ∈  of the current configuration  ⊂ R3. In this regard, the deformation gradient 𝑭 (𝑿) = ∇𝝋(𝑿) must have a positive
eterminant det 𝑭 (𝑿) > 0 for all 𝑿 ∈ 0. We also introduce the right and left Cauchy–Green tensor 𝑪 = 𝑭 𝑇𝑭 and 𝒃 = 𝑭𝑭 𝑇 , which
lay the role of convected Riemannian metrics defined on the reference and current configuration, respectively, i.e. these tensors are
ymmetric and positive definite.

The presented continuum mechanical framework is partly based on a multiplicative decomposition

𝑭 = (𝐽 1∕31)𝑭 (1)

of the deformation gradient 𝑭 into a spherical (volumetric) part 𝐽 1∕31 and an unimodular (isochoric) part 𝑭 = 𝐽−1∕3𝑭 with det 𝑭 = 1
y construction, see Simo et al. (1985), Ogden (1997) and Holzapfel (2000) among others. For the material-geometric setting, the
ecomposition (1) induces

𝑪 = 𝐽 2∕3𝑪 , 𝑪 = 𝑭 𝑇𝑭 (2)

here 𝑪 is the unimodular part of the right Cauchy–Green tensor.
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Fig. 1. Geometry of the fiber-cross-link dispersion: (a) two dispersed fiber families with mean unit directions 𝑴 𝑖 and corresponding normal unit vectors 𝑴n𝑖,
𝑖 = 1, 2; (b) visualization of the cross-link dispersion with respect to a dispersed fiber direction 𝑵 𝑖(𝜃). The unit vectors 𝑳±

𝑖 (𝜃) denote the mean cross-link directions
nclined under a fixed angle 𝛽𝑖 ∈ [0, 𝜋

2
] and 𝑲±

𝑖 (𝛼, 𝜃) the cross-link directions through an additional fiber-independent cross-link dispersion.

2.2. Geometry of planar fiber-cross-link dispersion

Consider a strip of tissue with two dispersed families of fibers, where 𝑴1, 𝑴2 denote the unit mean directions, see Fig. 1(a). A
push forward operation provides the spatial counterparts 𝒎𝑖 = 𝑭𝑴 𝑖, 𝑖 = 1, 2, in the current configuration. We have the component
representations

[𝑴1 ] = [ sin𝜙1, cos𝜙1, 0 ]𝑇 , [𝑴2 ] = [ − sin𝜙2, cos𝜙2, 0 ]𝑇 , (3)

where the two angles 𝜙1, and 𝜙2 are according to Fig. 1(a). It is assumed that the fiber directions do not have an out-of-plane
component. Next we consider two parallel and dispersed arbitrary fibers, the directions of which are governed by the unit vector
𝑵 𝑖(𝜃), where 𝜃 denotes the angle between this vector and the mean director 𝑴 𝑖. Considering the unit normal vector 𝑵n𝑖(𝜃) for this
generic fibers, we can introduce two connecting mean cross-links represented through the unit vectors

𝑳±
𝑖 (𝜃) = ± cos 𝛽𝑖 𝑵 𝑖(𝜃) + sin 𝛽𝑖 𝑵n𝑖(𝜃) 𝑖 = 1, 2 , (4)

where we assume a symmetric arrangement of the mean cross-links with respect to 𝑵n𝑖(𝜃) under the given angle 𝛽𝑖 ∈ [0, 𝜋2 ], see
ig. 1(b). Finally, we consider dispersed arbitrary cross-links by the unit vectors

𝑲±
𝑖 (𝛼; 𝜃) = ± cos(𝛽𝑖 + 𝛼)𝑵 𝑖(𝜃) + sin(𝛽𝑖 + 𝛼)𝑵n𝑖(𝜃) , (5)

here 𝛼 ∈ [−𝛽𝑖,
𝜋
2 − 𝛽𝑖] is the angle, measured from the mean cross-link direction 𝑳±

𝑖 (𝜃), see again Fig. 1(b). The representations of
he directors (4) and (5) with regard to the orthonormal basis system 𝑴 𝑖, 𝑴n𝑖 associated with the mean fibers follow from

𝑵 𝑖(𝜃) = cos 𝜃𝑴 𝑖 + sin 𝜃𝑴n𝑖 , 𝑵n𝑖(𝜃) = − sin 𝜃𝑴 𝑖 + cos 𝜃𝑴n𝑖 . (6)

Throughout the text, we will make the following additional modeling assumptions:

(i) The deformation is planar, i.e. the out-of-plane axis (𝑬3-direction) is a principal axis with associated principal stretch
𝜆(𝑬3) = 1.

(ii) The orientation probability of the cross-links is due to a dispersion of the fibers which are connected by those cross-links and
a dispersion that is geometrically independent of the fiber dispersion.

(iii) The dispersion of the fibers is not influenced by the cross-link dispersion.
(iv) The two fiber families and the two cross-link families (for given fiber angle 𝜃) are each equally dispersed and uncoupled.

Based on these assumptions, we will derive generalized structure tensors that govern anisotropic invariants entering the stored-
energy function.
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2.3. Anisotropic hyperelastic stress response

We consider an additive decomposition of the stored-energy function according to

𝛹̂ (𝑪 ;𝑴1,𝑴2) = 𝑈 (𝐽 ) + 𝛹̂iso(𝑪) + 𝛹̂aniso(𝑪 ;𝑴1,𝑴2) (7)

into volumetric, isochoric isotropic and anisotropic parts. Here, 𝑴1 and 𝑴2 are two material unit vectors that describe the mean
directions of two fiber families within the material. Note that within a (weakly) compressible framework, the multiplicative split (2)
is not applied to the anisotropic part, which would otherwise lead to unphysical stress responses, as outlined in Sansour (2008), Nolan
et al. (2014) and Gültekin et al. (2019). The representation theory of scalar-valued tensor functions, see Spencer (1971), Boehler
(1987) or Zheng (1994), yields a functional dependence of 𝛹iso on two (isochoric) invariants1 and of 𝛹aniso on eight anisotropic
invariants

𝐼1 = tr𝑪 , 𝐼2 = tr[cof𝑪] , 𝐼4𝑖 = 𝑪 ∶ 𝑯 𝑖 ,
𝐼5𝑖 = 𝑪2 ∶ 𝑯 𝑖 , 𝐼6𝑖 = 𝑪 ∶ 𝑯2

𝑖 , 𝐼7𝑖 = 𝑪2 ∶ 𝑯2
𝑖

(8)

where the constant (generalized) structure tensors 𝑯 𝑖, 𝑖 = 1, 2, are symmetric 𝑯 𝑖 = 𝑯𝑇
𝑖 . If there is no fiber dispersion, the structure

tensors have the simple form 𝑯 𝑖 = 𝑴 𝑖⊗𝑴 𝑖, which fulfills the invariance requirement governed by the symmetry group2 of transverse
isotropy 𝑖 = {𝑹(𝑴 𝑖, 0 ≤ 𝜙 ≤ 2𝜋),−1 }. In this case we only get four independent invariants in the anisotropic part 𝛹aniso because
of 𝐼4𝑖 = 𝐼6𝑖 and 𝐼5𝑖 = 𝐼7𝑖, where 𝐼4𝑖 stands for the squared stretch 𝜆2(𝑴 𝑖) in the fiber direction 𝑴 𝑖. The influence of the cross-links
is taken into account by eight additional coupled invariants

𝐼±𝑖 = 𝑪 ∶ 𝑯±
𝑖 , 𝐼⋆±8𝑖 = 𝑪 ∶ 𝑯⋆±

𝑖 , (9)

where the constant (generalized) structure tensors 𝑯±
𝑖 and 𝑯⋆±

𝑖 are symmetric and model the orientation probability of the cross-
links due to fiber dispersion and dispersion that is geometrically independent of the fiber dispersion, see Assumption (ii) in the
previous section. In the case of perfectly aligned fibers and cross-links, these tensors should have the form3

𝑯±
𝑖 = 𝑳±

𝑖 ⊗𝑳±
𝑖 , 𝑯⋆±

𝑖 = sym[ (𝑳±
𝑖 ⊗𝑳±

𝑖 )(𝑴 𝑖 ⊗𝑴 𝑖) ] , (11)

where 𝑳±
𝑖 = ±cos 𝛽𝑖 𝑴 𝑖 + sin 𝛽𝑖 𝑴n𝑖. Then 𝐼±𝑖 represents the squared stretch 𝜆2(𝑳±

𝑖 ) in the direction 𝑳±
𝑖 of the cross-links.

For the sake of simplicity we only consider the invariant 𝐼1 for the isotropic ground substance and only the invariants 𝐼4𝑖 for the
influence of the fibers such that we have the reduced dependencies

𝛹iso = 𝛹̃iso(𝐼1) and 𝛹aniso = 𝛹̃aniso(𝐼4𝑖, 𝐼
±
𝑖 , 𝐼

⋆±
8𝑖 ) . (12)

The stress response of the anisotropic material is

𝑺 = 2 𝜕𝑪 𝛹̂ = 𝐽𝑝𝑪−1 + 𝑺 iso + 𝑺aniso (13)

in terms of the pseudo-pressure4 𝑝 = 𝑈 ′(𝐽 ), the isochoric isotropic and the anisotropic contribution to the second Piola–Kirchhoff
stress tensor is

𝑺 iso = 𝐽−2∕3𝑺 ∶ P and 𝑺aniso = 2 𝜕𝑪 𝛹̃aniso . (14)

Herein, 𝑺 = 2 𝜕𝑪 𝛹̃iso is the fictitious isotropic second Piola–Kirchhoff stress tensor and P = I − 1
3 𝑪⊗𝑪−1 the fourth-order deviatoric

rojection tensor in the material setting in terms of the fully symmetric fourth-order unit tensor I , see, e.g., Holzapfel (2000). For
ncompressible materials 𝐽 (𝑿) ≡ 1 in 0, the second Piola–Kirchhoff stress tensor can be written as

𝑺 = 𝑝𝑪−1 + 2 (𝜕𝑪 𝛹̃iso + 𝜕𝑪 𝛹̃aniso) (15)

here the pseudo-pressure 𝑝 is a Lagrange multiplier that is not constitutively defined and 𝛹̃iso(⋅) coincides with the functional form
12)1, but the argument is replaced by the invariant 𝐼1 built by the right Cauchy–Green tensor 𝑪 .

.4. Structure tensors accounting for dispersion

With the Generalized Structure Tensor (GST) approach, dispersive effects can be included in the invariant-based formulation
12) of the material model. This averaging approach is based on a distribution density function that characterizes the dispersion of
tructural directors in relation to unit reference directions, see Advani and Tucker III (1987).

1 The co-factor of a second-order tensor 𝑨 is defined as cof 𝑨 = 𝑨−𝑇 det𝑨
2 By 𝑹(𝒂, 𝜙) we denote a rotation around the 𝒂-axis by an angle 𝜙.
3 With perfect alignment of fibers and cross-links, an alternative choice for 𝑯⋆±

𝑖 would be

𝑯⋆±
𝑖 = sym[𝑳±

𝑖 ⊗𝑴 𝑖] , (10)
which, however, is not suitable when it comes to dispersion. We would encounter integrals that, in addition to the cross-link related dispersion parameters
defined in (23) and derived from 𝐼±

𝑖 , introduce additional dispersion parameters that do not have a closed-form representation.
4 Since the sum 𝑺 iso +𝑺aniso of the isochoric isotropic and anisotropic stress contributions is not deviatoric with respect to the metric 𝑪 , the derivative 𝑈 ′(𝐽 )

cannot be regarded as a hydrostatic pressure.
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2.4.1. Fiber dispersion
In the GST approach the structure tensor incorporating fiber dispersion is defined as

𝑯 𝑖 =
1
𝜋 ∫

𝜋∕2

−𝜋∕2
𝜌f (𝜃)𝑵 𝑖(𝜃)⊗𝑵 𝑖(𝜃) d𝜃 𝑖 = 1, 2 (16)

in terms of a fiber-related probability density function 𝜌f that fulfills the normalization condition

1
𝜋 ∫

𝜋∕2

−𝜋∕2
𝜌f (𝜃) d𝜃 = 1 . (17)

In the definition (16) we have already taken into account that a fiber oriented at an angle 𝜃 cannot be distinguished from a fiber
oriented at 𝜃+𝜋. Obviously the generalized structure tensor (16) has the property tr𝑯 𝑖 = 1. If the dispersed fibers are symmetrically
distributed with respect to the unit reference direction 𝑴 𝑖, i.e. 𝜌f (𝜃) = 𝜌f (−𝜃), we get the representation

𝑯 𝑖 = 𝜅f
(2)
1 + (1 − 2𝜅f )𝑴 𝑖 ⊗𝑴 𝑖 with 𝜅f =

1
𝜋 ∫

𝜋∕2

−𝜋∕2
𝜌f (𝜃) sin

2 𝜃 d𝜃 (18)

eing the fiber dispersion parameter, see Gasser et al. (2006) for the general three-dimensional case. Here,
(2)
1 denotes the

wo-dimensional unit tensor of second order.

.4.2. Cross-link dispersion
We first consider the dispersion of cross-links connecting parallel fibers that are inclined at a given angle 𝜃. Analogous to (16)

we define the generalized structure tensor

𝑮±
𝑖 (𝜃) =

2
𝜋 ∫

𝜋
2 −𝛽

−𝛽
𝜌c(𝛼)𝑲

±
𝑖 (𝛼; 𝜃)⊗𝑲±

𝑖 (𝛼; 𝜃) d𝛼 𝑖 = 1, 2 (19)

in terms of a cross-link related probability density function 𝜌c that fulfills the normalization condition

2
𝜋 ∫

𝜋
2 −𝛽

−𝛽
𝜌c(𝛼) d𝛼 = 1 . (20)

The generalized structure tensor (19) can be written in the form

𝑮±
𝑖 (𝜃) = 𝐺±

11 𝑵 𝑖(𝜃)⊗𝑵 𝑖(𝜃) + 𝐺±
22 𝑵n𝑖(𝜃)⊗𝑵n𝑖(𝜃)

+𝐺±
12 𝑵 𝑖(𝜃)⊗𝑵n𝑖(𝜃) + 𝐺±

21 𝑵n𝑖(𝜃)⊗𝑵 𝑖(𝜃) (21)

with the components

𝐺±
11 = 1 − 𝜅 , 𝐺±

22 = 𝜅 , 𝐺±
12 = 𝐺±

21 = ±𝜅c (22)

in terms of the two cross-link dispersion parameters

𝜅 = 2
𝜋 ∫

𝜋
2 −𝛽

−𝛽
𝜌c(𝛼) sin

2(𝛽 + 𝛼) d𝛼 and 𝜅c =
2
𝜋 ∫

𝜋
2 −𝛽

−𝛽
𝜌c(𝛼) sin(𝛽 + 𝛼) cos(𝛽 + 𝛼) d𝛼 . (23)

ote that the off-diagonal components are non-zero, i.e. 𝜅c ≠ 0. With the definitions (23) we can write the structure tensor (19) in
he form

𝑮±
𝑖 (𝜃) = 𝜅

(2)
1 + (1 − 2𝜅)𝑵 𝑖(𝜃)⊗𝑵 𝑖(𝜃) ± 2𝜅c sym[𝑵 𝑖(𝜃)⊗𝑵n𝑖(𝜃)] . (24)

dditionally, we mention that with a symmetric distribution of the cross-links with respect to the director 𝑳±
𝑖 (𝜃) we have 𝛽 = 𝜋

4
and 𝜌c(𝛼) = 𝜌c(−𝛼).

2.4.3. 𝐼±𝑖 -Related dispersion
In order to include the influence of the fiber dispersion on the orientation probability of the fiber-connecting cross-links, we need

n averaging procedure of the structure tensor 𝑮±
𝑖 (𝜃) defined in (19) over the fiber orientation domain. Specifically, the 𝐼±𝑖 -related

structure tensor 𝑯±
𝑖 is defined as

𝑯±
𝑖 = 1

𝜋 ∫

𝜋∕2

−𝜋∕2
𝜌f (𝜃)𝑮

±
𝑖 (𝜃) d𝜃 𝑖 = 1, 2 . (25)

This yields an overall coupled probability density function of the cross-links in a multiplicative format, i.e.

𝜌(𝛼, 𝜃) = 𝜌c(𝛼) 𝜌f (𝜃) . (26)

Note that we have the property tr𝑯±
𝑖 = 1 again. For a symmetric distribution of the fibers with respect to the direction 𝑴 𝑖, we can,

by making use of the representations (6), write the structure tensor (25) in the specific form

±
(2)
𝑯 𝑖 = 𝜅1 + (1 − 2𝜅)𝑯 𝑖 ± 2𝜅c(1 − 2𝜅f ) sym[𝑴 𝑖 ⊗𝑴n𝑖] (27)
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in terms of the dispersion parameters 𝜅f and 𝜅, 𝜅c defined in (18)2 and (23) and we recall the expression (18)1 for the 𝐼4𝑖-related
tructure tensor 𝑯 𝑖 accounting for fiber dispersion. We now note some special cases:

• If there is no fiber dispersion, we have 𝜌f (𝜃) = 𝜋𝛿(𝜃) in terms of the Dirac delta function 𝛿(𝜃) and the dispersion parameter 𝜅f
attains the value 𝜅f = 0. Then, the 𝐼±𝑖 -related structure tensor (27) takes the form (24), but without the functional dependence
on 𝜃.

• For a uniform distribution of fibers, we have 𝜌f = 1 and the dispersion parameter 𝜅f attains the value 𝜅f = 1∕2. Then we get

𝑯+
𝑖 = 𝑯−

𝑖 = (1∕2)
(2)
1 and the invariants 𝐼+𝑖 = 𝐼−𝑖 are isotropic.

• If there is no fiber-independent cross-link dispersion, we have 𝜌c(𝛼) =
𝜋
2 𝛿(𝛼) and the dispersion parameters 𝜅 and 𝜅c have the

form

𝜅 = sin2 𝛽 and 𝜅c =
1
2
sin(2𝛽) . (28)

Then 𝑮±
𝑖 (𝜃) = 𝑳±

𝑖 (𝜃)⊗𝑳±
𝑖 (𝜃) and the 𝐼±𝑖 -related structure tensor (27) takes for the specific case 𝛽 = 𝜋

4 the form

𝑯±
𝑖 = 1

2

(2)
1 ± (1 − 2𝜅f ) sym[𝑴 𝑖 ⊗𝑴n𝑖] . (29)

• Obviously for vanishing cross-links and fiber dispersions, i.e. 𝜅f = 0 and (28) holds, the structure tensor 𝑯±
𝑖 has the standard

form (11)1.

2.4.4. 𝐼⋆±8𝑖 -Related dispersion
In order to consider dispersive effects in the invariant 𝐼⋆±8𝑖 , we define the generalized structure tensor 𝑯⋆±

𝑖 by the following
averaging operation on 𝑮±

𝑖 (𝜃), i.e.

𝑯⋆±
𝑖 = 1

𝜋 ∫

𝜋∕2

−𝜋∕2
𝜌f (𝜃) sym{𝑮±

𝑖 (𝜃)[𝑵 𝑖(𝜃)⊗𝑵 𝑖(𝜃)]} d𝜃 𝑖 = 1, 2 , (30)

which again induces the definition of an overall probability density function (26). Note that in contrast to the other structure tensors
(16) and (25), 𝑯⋆±

𝑖 does, in general, not have the property of the unit trace, i.e. tr𝑯⋆±
𝑖 = 1− 𝜅. For symmetric fiber dispersions we

obtain, after inserting (6) and (24) into (30), the explicit form

𝑯⋆±
𝑖 = (1 − 𝜅)𝑯 𝑖 ± 𝜅c(1 − 2𝜅f ) sym[𝑴 𝑖 ⊗𝑴n𝑖] (31)

in terms of the dispersion parameters 𝜅f and 𝜅, 𝜅c defined in (18)2 and (23) and where we recall the expression (18)1 for the
𝐼4𝑖-related structure tensor 𝑯 𝑖 accounting for fiber dispersion. Here, too, we would like to point out some special cases:

• If there is no fiber dispersion 𝜅f = 0, the 𝐼⋆±8𝑖 -related structure tensor (31) becomes

𝑯⋆±
𝑖 = sym[𝑮±

𝑖 (𝑴 𝑖 ⊗𝑴 𝑖)] (32)

in terms of the cross-link dispersion structure tensor (24) without a functional dependence on 𝜃.
• For a uniform distribution of fibers 𝜅f = 1∕2, we have 𝑯⋆±

𝑖 = (1∕2)(1 − 𝜅)
(2)
1 and the invariants 𝐼⋆+8𝑖 = 𝐼⋆−8𝑖 are isotropic.

• If no fiber-independent cross-link dispersion is taken into account, i.e. (28) holds, we have 𝑮±
𝑖 (𝜃) = 𝑳±

𝑖 (𝜃) ⊗ 𝑳±
𝑖 (𝜃) and the

𝐼⋆±8𝑖 -related structure tensor (31) reads for the specific case 𝛽 = 𝜋
4

𝑯⋆±
𝑖 = 1

2
𝑯 𝑖 ±

1
2
(1 − 2𝜅f ) sym[𝑴 𝑖 ⊗𝑴n𝑖] . (33)

• Apparently, for vanishing cross-link and fiber dispersions, i.e. 𝜅f = 0 and (28) holds, the structure tensor 𝑯⋆±
𝑖 takes the

standard form (11)2.

inally it should be noted that the maybe more intuitive choice sym[𝑯±
𝑖 𝑯 𝑖] for the 𝐼⋆±8𝑖 -related structure tensor does not work due

o the unilateral geometric coupling of the cross-links and the fiber dispersion, see Assumption (iii) in Section 2.2.

.5. Dispersion parameters for the von Mises distribution

To describe the (symmetric) probability distribution of fibers, it has been found proper to use the von Mises distribution, i.e. the
robability density function 𝜌f is specified as

𝜌f (𝜃) =
1

𝐼0(𝑎)
exp[𝑎 cos(2𝜃)] (34)

n terms of a concentration parameter 𝑎 and the modified Bessel function 𝐼0(𝑎) of the first kind of order zero. Analogously, we
ssume for a fixed fiber angle 𝜃 a von Mises distribution of the cross-links with 𝛽 = 𝜋∕4 such that the probability density function

𝜌c reads

𝜌c(𝛼) =
1

𝐼0(𝑏)
exp[𝑏 cos(4𝛼)] , (35)

here 𝑏 is again a concentration parameter. These two functions specify the overall probability density function (26).
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𝑎

Fig. 2. Dispersion parameters: we observe the ranges 0 ≤ 𝜅f ≤ 1 and 0 ≤ 𝜅c ≤ 1∕2, where only the values corresponding to non-negative concentration parameters
, 𝑏 (marked as black solid curves) retain the meaning of the directors 𝑴 𝑖, 𝑳±

𝑖 as mean fiber and cross-link directions, respectively.

Fig. 3. Cross-link probability density function: von Mises distribution (35) for different values of the dispersion parameters 1∕𝜋 = 𝜅(1)
c < 𝜅(2)

c < 𝜅(3)
c . For the

dispersion parameters 𝜅c < 1∕𝜋 (or equivalently 𝑏 < 0), the function localizes at the ends of the domain and the directors 𝑳±
𝑖 lose the meaning of mean cross-link

directions.

The dispersion parameters 𝜅f and 𝜅, 𝜅c defined in (18)2 and (23), result into

𝜅f =
𝐼0(𝑎) − 𝐼1(𝑎)

2𝐼0(𝑎)
and 𝜅 = 1

2
, 𝜅c =

exp(𝑏) erf(
√

2𝑏)

2
√

2𝜋𝑏 𝐼0(𝑏)
(36)

in terms of the modified Bessel function 𝐼1(𝑎) of the first kind of order one and the standard error function

erf(𝑥) = 2
√

𝜋 ∫

𝑥

0
exp(−𝑦2) d𝑦 . (37)

The functions (36) are shown in Fig. 2. Note that because of 𝜅 = 1∕2 the second term in the structure tensor (27) vanishes and the
coupling only occurs via the off-diagonal terms. In addition, the trace of the structure tensor (25) becomes tr𝑯⋆±

𝑖 = 1∕2. According
to (36)1, the fiber dispersion parameter 𝜅f is in the range 𝜅f ∈ [ 0, 1∕2 ], where the lower bound (𝑎 → ∞) corresponds to an ideal fiber
alignment in the direction 𝑴 𝑖 and the upper bound (𝑎 → 0) to a uniform fiber distribution. Mathematically, negative concentration
parameters 𝑎 are possible, but lead to probability density functions that are localized at the ends 𝜃 = ±𝜋∕2 and the normal vectors
𝑴n𝑖 take on the role of the mean fiber directors. For the cross-link dispersion parameter 𝜅c in (36)3 we find the admissible range
𝜅c ∈ [ 1∕𝜋, 1∕2 ], where for a given fiber angle, the lower bound (𝑏 → 0) models a distribution of cross-links that is uniform over the
quarter circle and the upper bound (𝑏 → ∞) an ideal alignment of cross-links. Again, negative values of the concentration parameter

±
𝑏 are possible, but the vectors 𝑳𝑖 lose the meaning of mean cross-link directions, see Fig. 3.
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2.6. Specification of the stored-energy function

We now specify the anisotropic stress response of a tissue with dispersed fibers connected by cross-links. The isochoric isotropic
art (12)1 is related to the ground substance and the anisotropic part (12)2 takes into account the mechanical responses of the fibers,
he cross-links and the cross-link-fiber interaction, i.e.

𝛹̃iso(𝐼1) = 𝛹̃g(𝐼1) and 𝛹̃aniso(𝐼4𝑖, 𝐼
±
𝑖 , 𝐼

⋆±
8𝑖 ) =

∑

𝑖=1,2
[ 𝛹̃f (𝐼4𝑖) + 𝛹̃c(𝐼

±
𝑖 ) + 𝛹̃fc(𝐼

⋆±
8𝑖 ) ] . (38)

he contributions from the isotropic ground substance and the fibers are specified by a neo-Hookean function and the model
f Holzapfel et al. (2000) to give

𝛹̃g(𝐼1) =
1
2
𝜇(𝐼1 − 3) and 𝛹̃f (𝐼4𝑖) =

𝑘1
2𝑘2

{ exp[ 𝑘2(𝐼4𝑖 − 1)2 ] − 1 } (39)

in terms of the shear modulus 𝜇 > 0, the stress-like constant 𝑘1 > 0 and the dimensionless constant 𝑘2 > 0. The influence of the
cross-links and the fiber-cross-link interaction on the mechanical behavior are modeled by the stored-energy functions

𝛹̃c(𝐼
±
𝑖 ) =

1
2
𝜈(𝐼±𝑖 − 1)2 and 𝛹̃fc(𝐼

⋆±
8𝑖 ) = 1

2
𝑐(𝐼⋆±8𝑖 − 1 + 𝜅)2 (40)

in terms of the material parameters 𝜈 ≥ 0 and 𝑐 ≥ 0 which measure the stiffness of the cross-links and the strength of the fiber-cross-
link connection, respectively.5 Then, the anisotropic contribution (14)2 to the second Piola–Kirchhoff stress tensor is of the specific
form

𝑺aniso =
∑

𝑖=1,2
{ 2𝜅f 𝛹̃ ′

f (𝐼4𝑖) + 2[ 𝜅 + 𝜅f (1 − 2𝜅) ]𝐴+
𝑖 + 2𝜅f (1 − 𝜅)𝐵+

𝑖 }
(2)
1

+
∑

𝑖=1,2
2(1 − 2𝜅f )[ 𝛹̃ ′

f (𝐼4𝑖) + (1 − 2𝜅)𝐴+
𝑖 + (1 − 𝜅)𝐵+

𝑖 ]𝑴 𝑖 ⊗𝑴 𝑖

+
∑

𝑖=1,2
2𝜅c(1 − 2𝜅f )(2𝐴−

𝑖 + 𝐵−
𝑖 ) sym[𝑴 𝑖 ⊗𝑴n𝑖] (42)

with the abbreviations

𝐴±
𝑖 = 𝛹̃ ′

c(𝐼
+
𝑖 ) ± 𝛹̃ ′

c(𝐼
−
𝑖 ) and 𝐵±

𝑖 = 𝛹̃ ′
fc(𝐼

⋆+
8𝑖 ) ± 𝛹̃ ′

fc(𝐼
⋆−
8𝑖 ) , (43)

where (⋅)′ denotes the ordinary derivative of the function with respect to its argument.

3. Homogeneous examples

We now apply the proposed model to two homogeneous deformation modes, namely uniaxial extension and simple shear.
We assume vanishing volume forces and neglect inertia, so that the balance of linear momentum Div(𝑭𝑺) = 0 is satisfied. The
compatibility condition Curl𝑇𝑭 = 0 is trivially fulfilled.

3.1. Uniaxial extension

As a first model problem, we consider a tissue with one symmetrically dispersed fiber family that is extended by a stretch 𝜆 ≥ 1
in the direction 𝑴 of the mean fiber such that6

𝑭𝑴 = 𝜆𝑴 and 𝑭𝑴n = 𝜆−1𝑴n . (44)

We assume that the material is incompressible and the governing invariants are built by the right Cauchy–Green tensor 𝑪. The
kinematics (44) results in 𝐼+ = 𝐼− and 𝐼⋆+8 = 𝐼⋆−8 and consequently 𝐴+ = 2𝛹̃ ′

c(𝐼
+), 𝐴− = 0 and 𝐵+ = 2𝛹̃fc(𝐼⋆+8 ), 𝐵− = 0. We assume

that the dispersion of the cross-links is only induced by the dispersion of the fibers. Then the dispersion parameters 𝜅 and 𝜅c (only
̃ is relevant here) in terms of the angle 𝛽 take the form (28), which describes the orientation of the cross-links with respect to the
parallel fibers connecting them, see Fig. 1(b). The anisotropic invariants take the specific forms

𝐼4 = 𝜅f𝜆
−2 + (1 − 𝜅f )𝜆2 , (45)

𝐼+ = 𝐼− = 1
2
(𝜆−2 − 𝜆2)[ 1 − (1 − 2𝜅f ) cos 2𝛽 ] + 𝜆2 , (46)

5 Fiber and Cross-Link Density. For simplicity, we did not explicitly consider the volume fractions of fibers and cross-links. However, this can easily be
chieved by modifying (38) in this way

𝛹 = [ 1 −
∑

𝑖=1,2
(𝜙f 𝑖 + 𝜙c𝑖) ] 𝛹̃g(𝐼1) +

∑

𝑖=1,2
{𝜙f 𝑖 𝛹̃f (𝐼4𝑖) + 𝜙c𝑖 [ 𝛹̃c(𝐼

±
𝑖 ) + 𝛹̃fc(𝐼

⋆±
8𝑖 ) ] } , (41)

where 𝜙f 𝑖, 𝜙c𝑖 ∈ [0, 1] with max{
∑

𝑖=1,2(𝜙f 𝑖 + 𝜙c𝑖) } = 1 are the fractions of the fibers and cross-links per unit undeformed volume associated with fiber family 𝑖.
6
 Recall Assumption (i) of plane strain, specified in Section 2.2.
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𝐼⋆+8 = 𝐼⋆−8 = [ 𝜅f𝜆−2 + (1 − 𝜅f )𝜆2 ] cos2 𝛽 , (47)

nd we observe 𝐼⋆+8 = 𝐼⋆−8 = 𝐼4 cos2 𝛽. A push-forward of the second Piola–Kirchhoff stress tensor (15) yields the Cauchy stress
ensor

𝝈 = 𝑝1 + 𝜇𝒃 + { 2𝜅f 𝛹̃ ′
f (𝐼4) + 𝜅f𝐵

+ + 𝐴+ + [ 𝜅f𝐵+ − (1 − 2𝜅f )𝐴+ ] cos 2𝛽}
(2)
𝒃

+ (1 − 2𝜅f )[ 2𝛹̃ ′
f (𝐼4) + 𝐵+ + (𝐵+ + 2𝐴+) cos 2𝛽 ] 𝜆2𝑴 ⊗𝑴 (48)

in terms of the two- and three-dimensional left Cauchy–Green tensor
(2)
𝒃 = 𝜆2𝑴 ⊗𝑴 + 𝜆−2𝑴n ⊗𝑴n and 𝒃 =

(2)
𝒃 + 𝑬3 ⊗ 𝑬3 , (49)

hich have the same form as the two- and three-dimensional right Cauchy–Green tensor, respectively. Additionally we have the
xpressions

𝐴+ = 2𝜈(𝐼+ − 1) and 𝐵+ = 2𝑐(𝐼⋆+8 − cos2 𝛽) . (50)

he Lagrange multiplier 𝑝 can be determined by a condition of vanishing normal stress in the lateral direction 𝑴n, i.e.

𝑝 = −{𝜇 + 2𝜅f 𝛹̃ ′
f (𝐼4) + 𝜅f𝐵

+ + 𝐴+ + [ 𝜅f𝐵+ − (1 − 2𝜅f )𝐴+ ] cos 2𝛽 }𝜆−2 . (51)

hen the normal Cauchy stress in the mean fiber direction 𝑴 takes on the final form

𝜎 = 𝜆2{𝜇 + 𝐴+ + (1 − 𝜅f )[ 2𝛹̃ ′
f (𝐼4) + 𝐵+ ] + [ 𝜅f𝐵+ + (1 − 2𝜅f )(𝐴+ + 𝐵+) ] cos 2𝛽}

− 𝜆−2{𝜇 + 2𝜅f 𝛹̃ ′
f (𝐼4) + 𝜅f𝐵

+ + 𝐴+ + [ 𝜅f𝐵+ − (1 − 2𝜅f )𝐴+ ] cos 2𝛽 } . (52)

ased on this expression, we investigate the stress response for two different orientations of the cross-links as shown in Fig. 4.
For 𝛽 = 90◦ the cross-links are orthogonal to the dispersed fibers and the expression (52) for the normal stress reduces to

𝜎 = 𝜇(𝜆2 − 𝜆−2) + 2𝜆2[ (1 − 𝜅f )𝛹̃ ′
f (𝐼4) + 𝜅f 𝐴

+ ] − 2𝜆−2[ 𝜅f 𝛹̃ ′
f (𝐼4) + (1 − 𝜅f )𝐴+ ] . (53)

e observe that the strength of the cross-link-fiber interaction is irrelevant for the normal stress in the mean fiber direction, i.e. 𝜎
s not a function of 𝐵+ since 𝐼⋆±8 = 0. The sensitivity with respect to the cross-link stiffness reads

𝜕𝜎
𝜕𝜈

= 4(𝐼+ − 1)[ 𝜅f𝜆2 − (1 − 𝜅f )𝜆−2 ] (54)

hich, depending on the fiber dispersion parameter 𝜅f , can switch the sign during tensile loading. For 𝜅f = 0, however, we get a
non-negative sensitivity 𝜕𝜎∕𝜕𝜈 = 4𝜆−4(𝜆2 − 1) ≥ 0, i.e. the presence of cross-links leads to an overall stiffer response, as reported
in Holzapfel and Ogden (2020a). We now specify the dimensionless material parameters as 𝑘̄1 = 𝑘1∕𝜇 = 1, 𝑘2 = 0.3 and 𝜈̄ = 𝜈∕𝜇 = 5.
From the solid curves in Fig. 4(a) it can be seen that an increasing value of 𝜅f leads to a certain reduction in the (global) stiffness.7 We
do not have a continuous decrease of the (global) stiffness with increasing fiber dispersion parameter, as indicated by the dashed
curves in Fig. 4(a). This is because the more dispersed the fibers become, the closer the cross-links are to the loading direction,
resulting in an increase of the (global) stiffness.

Next, we investigate a cross-link orientation of 𝛽 = 30◦. The values of the dimensionless material parameters 𝑘̄1, 𝑘2 and 𝜈̄ are
the same as before and we additionally set 𝑐 = 𝑐∕𝜇 = 0. The corresponding stress response for different values of 𝜅f can be observed
from the solid curves in Fig. 4(b). We recognize a decreasing (global) stiffness for increasing values of the fiber dispersion parameter
up to the final value 𝜅f = 1∕2. This is in contrast to the previous case 𝛽 = 90◦ since at cross-link orientation 𝛽 = 30◦, the stiffest
configuration is achieved for fibers perfectly aligned to the tensile loading direction. This observation can be roughly generalized
for the considered model problem of uniaxial extension: for cross-link topologies with a (more or less) acute angle 𝛽, the (global)
stiffness continuously decreases with increasing fiber dispersion parameter 𝜅f , while for cross-link topologies with a (more or less)
obtuse angle 𝛽, we expect an increase in (global) stiffness if the fibers are sufficiently dispersed. Finally, to show the general stiffening
influence of the cross-links, the dotted curves in Fig. 4(b) correspond to a stress response without cross-links (𝜈̄ = 0).

7 Global versus Local Stiffness. If we denote by 𝒕 the true traction vector in the loading direction 𝑴 , we write 𝒕 = (𝜎∕𝜆)𝝀𝑴 , where 𝝀𝑴 is the corresponding
spatial stretch vector. Building the total differential yields

d𝒕 = 𝑲𝑇 d𝝀𝑴 with 𝑲𝑇 = 1
𝜆2

( d𝜎
d𝜆

− 𝜎
𝜆

)

𝝀𝑴 ⊗ 𝝀𝑴 + 𝜎
𝜆
1 , (55)

where 𝑲𝑇 is the stiffness tensor. Decomposition of the infinitesimal stretch vector d𝝀𝑴 = d𝜆𝑴 + d𝛾𝑴n, where d𝜆 is an infinitesimal stretch in direction 𝑴 and
d𝛾 is an amount of shear related to an infinitesimal simple shear deformation in direction 𝑴𝑛, we obtain the separate traction increments from (55)

d𝒕∥ = d𝜎
d𝜆

d𝜆𝑴 and d𝒕⊥ = 𝜎
𝜆
d𝛾𝑴n . (56)

From there we see that increments of stretch and simple shear lead to different increments in the traction governed by the local (or differential) stiffness d𝜎∕d𝜆
and the factor 𝜎∕𝜆, which represents the global stiffness multiplied with 1 − 1∕𝜆, respectively.
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Fig. 4. Uniaxial extension: stress response for cross-link orientations (a) 𝛽 = 90◦ and (b) 𝛽 = 30◦ at different values of the fiber dispersion parameter 𝜅(1)
f = 0

ideal fiber alignment), 𝜅(2)
f = 0.1, 𝜅(3)

f = 0.22, 𝜅(4)
f = 0.42 and 𝜅(5)

f = 0.5 (uniform fiber distribution). The other material parameters are chosen as 𝑘̄1 = 𝑘1∕𝜇 = 1,
2 = 0.3, 𝜈̄ = 𝜈∕𝜇 = 5 and 𝑐 = 𝑐∕𝜇 = 0. The solid/dashed curves in (a) indicate a decrease/increase of the (global) stiffness for increasing fiber dispersion
arameter. In (b) the dotted curves correspond to different values of 𝜅f without cross-links (𝜈̄ = 0).

.2. Simple shear and the Poynting effect

As a second homogeneous model problem, we consider simple shear and refer again to Fig. 1(a). It is assumed that the tissue
as only one symmetrically dispersed fiber family and we write 𝑴 = 𝑴1 and 𝜙 = 𝜙1. The deformation gradient has the specific
orm 𝑭 = 1 + 𝛾𝑬1 ⊗ 𝑬2, in terms of the amount of shear 𝛾 ≥ 0. The push-forwards of the structural director and its normal are as
ollows

𝒎 = 𝑴 + 𝛾 cos𝜙𝑬1 and 𝒎n = 𝑴n + 𝛾 sin𝜙𝑬1 . (57)

e take the range 𝜙 ∈ [0, 𝜋∕2] in such a way that the mean fiber is always extended 𝜆(𝑴) ≥ 1. As will be explained later, we
ssume that the material is nearly incompressible. Therefore, we apply the volumetric–isochoric split of the deformation gradient
n the isotropic part of the stored-energy function, but not on the anisotropic part, as indicated in (12). A reason for such an

incomplete’ split will be given in Section 3.2.1. We fix the orientation of the mean cross-links with respect to the fibers connecting
hem to 𝛽 = 45◦ and consider the fiber-independent symmetric cross-link dispersion governed by the parameters 𝜅 = 1∕2 and 𝜅c
pecified in (36)2−3. The invariants take the specific forms

𝐼1 = 3 + 𝛾2 , (58)

𝐼4 = 1
2
[ 2 + 𝛾2 + 𝛾(1 − 2𝜅f )(𝛾 cos 2𝜙 + 2 sin 2𝜙) ] , (59)

𝐼± = 1
2
[ 2 + 𝛾2 ± 2𝛾𝜅c(1 − 2𝜅f )(𝛾 sin 2𝜙 − 2 cos 2𝜙) ] , (60)

𝐼⋆± = 1 [ 𝐼 ± 𝛾𝜅 (1 − 2𝜅 )(𝛾 sin 2𝜙 − 2 cos 2𝜙) ] , (61)
8 2 4 c f
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where 𝐼1 = 𝐼1 due to the isochoric deformation mode. A push-forward of the second Piola–Kirchhoff stress tensor (13) gives the
Cauchy stress tensor

𝝈 = −
𝜇
3
𝐼11 + 𝜇𝒃 + [ 2𝜅f 𝛹̃ ′

f (𝐼4) + 𝐴+ + 𝜅f𝐵
+ ]

(2)
𝒃

+(1 − 2𝜅f )[ 2𝛹̃ ′
f (𝐼4) + 𝐵+ ]𝒎⊗𝒎 + 2𝜅c(1 − 2𝜅f )(2𝐴− + 𝐵−) sym[𝒎⊗𝒎n] (62)

in terms of the two- and three-dimensional left Cauchy–Green tensor
(2)
𝒃 =

(2)
1 + 𝛾2𝑬1 ⊗ 𝑬1 + 2𝛾 sym[𝑬1 ⊗ 𝑬2] and 𝒃 =

(2)
𝒃 + 𝑬3 ⊗ 𝑬3 . (63)

Additionally, we have the expressions

𝐴+ = 𝜈(𝐼+ + 𝐼− − 2) , 𝐴− = 𝜈(𝐼+ − 𝐼−) ,
𝐵+ = 𝑐(𝐼⋆+8 + 𝐼⋆−8 − 1) , 𝐵− = 𝑐(𝐼⋆+8 − 𝐼⋆−8 ) . (64)

Inserting (60) and (61) we see that 𝐴+ = 𝜈𝛾2 and 𝐵+ = 𝑐(𝐼4 − 1) are independent of the dispersion parameter 𝜅c. Note that due to
the isochoric deformation mode, the volumetric stored-energy function 𝑈 (𝐽 ) does not play a role since 𝑈 ′(1) = 0, i.e. the stresses
re independent of the bulk modulus 𝐾. Hence, the incompressible limit8 cannot be obtained from (62) by taking 𝐾 → ∞. In this

simple shear example we are interested in the normal stress 𝜎22 in the direction perpendicular to the shear planes (lateral direction).
n particular, we want to know under what conditions this stress is compressive (the body wants to expand laterally) or tensile (the
ody wants to shrink laterally). From (62) we obtain

𝜎22 = −
𝜇
3
(3 + 𝛾2) + 𝜇 + 2𝜅f 𝛹̃ ′

f (𝐼4) + 𝐴+ + 𝜅f𝐵
+ + (1 − 2𝜅f )[ 2𝛹̃ ′

f (𝐼4) + 𝐵+ ] cos2 𝜙

+ 𝜅c(1 − 2𝜅f )(2𝐴− + 𝐵−) sin 2𝜙 . (68)

Experimentally it was observed by Poynting (1909) that elastic rods made out of rubber usually extend along their axis when
twisted, which is called the positive Poynting effect. In case of simple shear, this scenario roughly translates into the tendency for
he specimen to spread apart at the top and bottom. It is important to note that the local kinematic equivalence of pure torsion
ith simple shear does not necessarily result in the same characteristic Poynting effect, which requires a separate analysis for pure

orsion. This is discussed in detail in Section 4.
In contrast, semi-flexible biopolymer gels exhibit the behavior of approaching top and bottom faces under simple shear. This is

alled the negative Poynting effect and was observed experimentally9 by Janmey et al. (2007) and Kang et al. (2009). The explanation
or this opposite effect in biopolymeric gels is believed to be that the network connecting filaments cause a net tension in the direction
rthogonal to the shear planes. Starting with the expression (68) for the lateral normal stress necessary to maintain the simple
hear deformation, let us now examine both the positive and negative Poynting effects and their relationship to cross-links, fiber
nd cross-link dispersion. Before we proceed by considering different orientations of the mean fibers, we put a remark concerning
imple shear.

emark. A problem encountered with simple shear is that it is quite difficult to experimentally realize its kinematic conditions.
ore realistic problems such as double lap shear should therefore be taken into account in the future via FE computations.

.2.1. Horizontal mean fiber direction
We consider the case of horizontal mean fibers 𝜙 = 90◦ (which are not subject to stretching) and simplify the expression (68) to

𝜎22 = −
𝜇
3
𝛾2 + 2𝜅f 𝛹̃ ′

f (𝐼4) + 𝐴+ + 𝜅f𝐵
+ . (69)

We observe immediately that this stress is independent of the fiber-independent dispersion of the cross-links, i.e. it is not a function
of the parameter 𝜅c.

8 Compressibility and Incompressibility for Isochoric Deformation. Recalling stress (13) for a compressible material together with the definitions (14),
we obtain for an isochoric deformation

𝑺 = [ 𝑝 − 1
3
(𝑺 ∶ 𝑪) ]𝑪−1 + 𝑺 + 2 𝜕𝑪 𝛹̂aniso(𝑪 ;𝑴) with 𝑝 = 𝑈 ′(1) = 0 . (65)

Noting 𝑺 = 2 𝜕𝑪 𝛹̂iso(𝑪) we obtain the same stress governed by an incompressible material when the Lagrange multiplier 𝑝 in (15) takes the form

𝑝 = − 2
3

tr𝑪 [𝜕𝑪 𝛹̂iso(𝑪)] = − 2
3
𝜕𝑪 𝛹̂iso(𝑪) ∶ 𝑪 . (66)

It is governed only by the isotropic stored-energy function and for a neo-Hookean ground substance under simple shear we get

𝑝 = − 1
3
𝜇(3 + 𝛾2) . (67)

9 Note carefully that force measurements were made using a strain-controlled rheometer performing a torsion test. The translation of these global (structural)
results to the local stress state of simple shear may not be obvious, especially when the material possesses a complex anisotropic microstructure. Again, we refer

to the discussion in Section 4.
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Fig. 5. Simple shear (horizontal alignment of the mean fibers 𝜙 = 90◦): lateral normal stress for different fiber dispersion parameters 𝜅(1)
f = 0 (ideal fiber

lignment), 𝜅(2)
f = 0.35 and 𝜅(3)

f = 0.5 (uniform fiber distribution). The solid curves indicate the behavior without cross-links and the dashed curves with
ross-links. In the latter case, the dimensionless parameters 𝜈̄ = 𝜈∕𝜇 = 3 and 𝑐 = 𝑐∕𝜇 = 2 are chosen. The other material parameters are 𝑘̄1 = 𝑘1∕𝜇 = 2 and
2 = 0.3.

For our analysis we first neglect the fiber dispersion 𝜅f = 0. Then the fibers do not contribute, but the cross-links contribute via
he non-negative term 𝐴+ = 𝜈𝛾2 ≥ 0. The term 𝐵+, representing the interaction between fiber and the cross-link, disappears. We
ind that the lateral normal stress 𝜎22 has a positive sign if and only if the cross-link stiffness is 𝜈 > 𝜇∕3.

On the other hand, for dispersed fibers 𝜅f ≠ 0 the stored energy related to the fiber stretch and the term 𝐵+ = 𝑐𝜅f 𝛾2 are active
nd the sign of 𝜎22 can switch from negative to positive with increasing amount of shear 𝛾, i.e. the sign change occurs at

𝛾 = 1
𝑘1∕42

√

𝜅f

[

ln

(

−
𝑐𝜅2

f − 𝜇∕3 + 𝜈

2𝑘1𝜅2
f

)]1∕4

for 𝜈 <
𝜇
3
− 𝜅2

f (𝑐 + 2𝑘1) . (70)

If the cross-links are stiff enough 𝜈 ≥ 𝜇∕3 − 𝜅2
f (𝑐 + 2𝑘1) the lateral normal stress remains positive during simple shear deformation.

From the last expression we see that the fiber dispersion lowers the necessary cross-link stiffness required to obtain a lateral tensile
normal stress 𝜎22. Taking a look at the sensitivities

𝜕𝜎22
𝜕𝜈

= 𝛾2 ≥ 0 and
𝜕𝜎22
𝜕𝑐

= 𝜅2
f 𝛾

2 ≥ 0 , (71)

we see that the dispersion does not affect the growth of the lateral normal stress with respect to an increasing cross-link stiffness,
but determines the growth with respect to the cross-link-fiber interaction parameter. Without cross-links 𝜈 = 𝑐 = 0, the lateral
normal stress is positive for all 𝛾 > 0 if and only if 𝜅f ≥

√

𝜇∕(6𝑘1) for the fiber dispersion parameter. Recalling the admissible
range 𝜅f ∈ [ 0, 1∕2 ] we see from the last expression that 𝜎22 cannot be tensile throughout the simple shear deformation if the shear
modulus is too high 𝜇 > 3∕2 𝑘1.

In Fig. 5 the lateral normal stress response is plotted for the dimensionless parameters 𝑘̄1 = 𝑘1∕𝜇 = 2 and 𝑘2 = 0.3. Looking
at the solid curves, which do not indicate cross-links, we see a transition from compressive to tensile stress as the value of the
fiber dispersion parameter 𝜅f increases. From the dashed curves we observe that the presence of cross-links strongly supports the
tendency of the specimen to contract laterally, as indicated in the sensitivities (71). In this example, the dimensionless cross-link
stiffness and the cross-link-fiber interaction parameter are set to 𝜈̄ = 𝜈∕𝜇 = 3 and 𝑐 = 𝑐∕𝜇 = 2.

Next we want to point out the difference in the results for the lateral normal stress when the volumetric–isochoric split is also
applied on the anisotropic part of the stored-energy function. In this case, neglecting the fiber dispersion 𝜅f = 0 for simplicity, we
obtain for the lateral normal stress after some calculations not given here

𝜎22 = −
𝛾2

3
[𝜇 + (𝛾2 − 1)𝜈 + 4𝜅2

c (𝑐 + 4𝜈) ] , (72)

where we put the tilde sign to distinguish this result from (69), which takes the simple form

𝜎22 = −
𝛾2

3
(𝜇 − 3𝜈) . (73)

Comparing the expressions (72) and (73) we find fundamental qualitative differences. First, 𝜎22 is affected by fiber-independent cross-
link dispersion via the parameter 𝜅c, while 𝜎22 is not (as mentioned above). Second, recalling the admissible range 𝜅c ∈ [ 1∕𝜋, 1∕2 ]
for the fiber-independent cross-link dispersion parameter, we find that 𝜎22 is always compressive and decreases with increasing
cross-link stiffness 𝜈. This behavior is non-intuitive, as can be understood by considering two single cross-links represented by the
directors [𝑳± ] = [ ± cos 𝛽, sin 𝛽, 0 ]𝑇 with 𝛽 = 45◦: the stretches of the cross-links under simple shear become 𝜆2(𝑳±) = 𝛾2∕2 ± 𝛾 + 1
and we observe that the cross-link connected to 𝑳+ is under tension and the cross-link connected to 𝑳− is under tension/compression
for 𝛾 ≷ 2. So if we remove the kinematic constraint at the top or bottom (perhaps at high enough amount of shear), we expect the
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body to contract in the lateral direction. This circumstance raises another doubt in the volumetric–isochoric split applied on the
anisotropic part of the stored-energy function. Fig. 6 depicts the lateral normal stress response for both the ‘incomplete’ and the
‘complete’ volumetric–isochoric split for different values of the cross-link stiffness 𝜈.

Finally, if we neglect the fiber dispersion 𝜅f = 0 and the cross-links 𝜈 = 0 in (69), we recover the standard isotropic case, so worth
ome remarks;

emark (Isotropy). For the considered nearly incompressible ansatz, the neo-Hookean model results in a negative lateral normal stress
22 = −𝜇∕3 𝛾2 which means that the top and bottom faces have a tendency to spread apart. In the case of an incompressible material,
he unknown Lagrange multiplier 𝑝 ∈ R in (15) is in the literature often determined for the simple shear mode by either

(i) the condition of plane stress10 𝜎33 = 0, or
(ii) the condition of vanishing normal traction on the inclined faces 𝜎22 − [𝛾∕(1 + 𝛾2)] 𝜎12 = 0.

epending on which of these kinetic conditions are set, and assuming a stored-energy function 𝛹̃ (𝐼1) that depends only on the
irst principal invariant 𝐼1, we obtain either (i) a vanishing lateral normal stress, or, if the inequality 𝜕𝐼1 𝛹̃ > 0 holds, (ii) a
ositive lateral normal stress. Note that for the kinetic condition (i) of the plane stress, a non-zero normal stress 𝜎22 can only
e obtained by considering the second principal invariant 𝐼2 in the stored-energy function 𝛹̃ (𝐼1, 𝐼2), see Horgan and Murphy
2011, 2017) and Destrade et al. (2015).11 More specifically, these references state that for condition (i) the lateral normal stress is
ompressive/tensile if 𝜕𝐼2 𝛹̃ ≷ 0. Usually this is controlled by the sign of a material parameter.

To get rid of the ambiguity regarding the compressive or tensile nature of the lateral stress 𝜎22 resulting from the choice of the
inetic condition (i) or (ii) in the case of incompressibility, a nearly incompressible framework as in Horgan and Murphy (2010)
s imposed. As mentioned in Footnote , for an isochoric deformation the stress obtained by the nearly incompressible ansatz can
lso be generated by an incompressible framework if the Lagrange multiplier 𝑝 is set to (67), which does not involve any kinetic
ssumption.

.2.2. Vertical mean fiber direction
Next we consider the case of vertical mean fibers 𝜙 = 0◦ and the expression (68) simplifies to

𝜎22 = −
𝜇
3
𝛾2 + 2(1 − 𝜅f )𝛹̃ ′

f (𝐼4) + 𝐴+ + (1 − 𝜅f )𝐵+ . (74)

Here, too, we see immediately that the lateral normal stress is independent of the parameter 𝜅c. Comparing (74) with (69) shows a
difference in the factor multiplied with the second and fourth terms.

Neglecting the fiber dispersion 𝜅f = 0 we see that both the fibers and the cross-links contribute to 𝜎22. In contrast to the case of
horizontal mean fiber directions, the cross-links also affect the lateral normal stress via the term 𝐵+ = 𝑐𝛾2, i.e. the cross-link-fiber
interaction parameter 𝑐 plays a role. With increasing amount of shear 𝛾, the lateral normal stress can switch from compressive to
tension, i.e. the transition occurs at

𝛾 = 1
𝑘1∕42

[

ln
(

−
𝑐 − 𝜇∕3 + 𝜈

2𝑘1

)]1∕4
for 𝜈 <

𝜇
3
− (𝑐 + 2𝑘1) . (75)

With sufficiently stiff cross-links (𝜈 ≥ 𝜇∕3 − (𝑐 + 2𝑘1)) the lateral normal stress 𝜎22 remains positive throughout simple shear
deformation. We observe that less stiff cross-links are required to generate a lateral tensile normal stress attributable to the stretched
fibers compared to horizontally aligned fibers.

For dispersed fibers 𝜅f ≠ 0 the sign of 𝜎22 can switch from negative to positive again with increasing amount of shear 𝛾, i.e. the
sign changes at

𝛾 = 1
𝑘1∕42

√

1 − 𝜅f

[

ln
(

−
𝑐(1 − 𝜅f )2 − 𝜇∕3 + 𝜈

2𝑘1(1 − 𝜅f )2

)]1∕4

for 𝜈 <
𝜇
3
− (1 − 𝜅f )2(𝑐 + 2𝑘1) . (76)

or sufficiently stiff cross-links (𝜈 ≥ 𝜇∕3− (1−𝜅f )2(𝑐+2𝑘1)) the lateral normal stress throughout simple shear deformation is tensile.
e observe that, in contrast to a horizontal mean fiber direction, fiber dispersion increases the cross-link stiffness required to obtain
lateral tensile normal stress. Taking a look at the sensitivities

𝜕𝜎22
𝜕𝜈

= 𝛾2 ≥ 0 and
𝜕𝜎22
𝜕𝑐

= (1 − 𝜅f )𝛾2 ≥ 0 , (77)

e find again that the dispersion does not affect the growth of the lateral normal stress with respect to an increasing cross-link
tiffness, but determines the growth with respect to the cross-link-fiber interaction parameter. If there are no cross-links (𝜈 = 𝑐 = 0),

10 Recalling that we are considering the scenario of plane strain (𝜆3 = 1), the imposition of the condition 𝜎33 = 0 may not be permissible since the out-of-plane
irection becomes overconstrained. A model that constitutively determines 𝜎33 = 0 for 𝜆3 = 1 may exist, but such an adjustment seems neither practical nor

desirable. Nevertheless, for a comparison with the compressible ansatz, which does not require any additional kinetic assumption, we also consider the plane
stress state for the incompressible setting in the following. It should also be noted that for inhomogeneous problems the Lagrange multiplier field 𝑝 is determined
via the mechanical equilibrium and no (possibly ‘mixed up’) additional kinetic condition is required, see also Section 4.

11 2
In the case of simple shear, the second principal invariant coincides with the first, 𝐼1 = 𝐼2 = 3 + 𝛾 .



S. Teichtmeister and G.A. Holzapfel

T
c
p

Fig. 6. Simple shear (horizontal alignment of mean fibers 𝜙 = 90◦) – ‘complete’ versus ‘incomplete’ volumetric–isochoric split: fiber dispersion is ignored 𝜅f = 0.
he solid curves indicate the lateral normal stress obtained by applying the ‘incomplete’ volumetric–isochoric split (12) for increasing values of the dimensionless
ross-link stiffness, i.e. 𝜈̄(1) = 0.7 and 𝜈̄(2) = 1.5. The dashed curves show the behavior for the ‘complete’ split (𝑐 = 𝑐∕𝜇 = 0 and 𝜅c = 1∕2), i.e. the unimodular
art 𝑪 of the right Cauchy–Green tensor is used to formulate the anisotropic part of the stored-energy function. For 𝜈̄ = 0 both formulations coincide. If one

considers an incompressible material and determines the Lagrange multiplier 𝑝 by the condition of plane stress, then the lateral normal stress vanishes.

Fig. 7. Simple shear (vertical alignment of the mean fibers 𝜙 = 0◦): lateral normal stress for different fiber dispersion parameters 𝜅(1)
f = 0 (ideal fiber alignment),

𝜅(2)
f = 0.25 and 𝜅(3)

f = 0.5 (uniform fiber distribution). The solid curves show the behavior without cross-links and the dashed curves with cross-links. In the latter
case, the dimensionless parameters 𝜈̄ = 𝜈∕𝜇 = 2 and 𝑐 = 𝑐∕𝜇 = 3 are chosen. The other material parameters are 𝑘̄1 = 𝑘1∕𝜇 = 1∕3 and 𝑘2 = 0.3.

the lateral normal stress 𝜎22 is positive for all 𝛾 > 0 if and only if 𝜅f ≤ 1−
√

𝜇∕(6𝑘1). Recalling the admissible range 𝜅f ∈ [ 0, 1∕2 ] we
observe from the last expression that 𝜎22 cannot be tensile throughout simple shear deformation, if the shear modulus is too high
𝜇 > 6𝑘1.

Fig. 7 shows the lateral normal stress response for the dimensionless parameters 𝑘̄1 = 𝑘1∕𝜇 = 1∕3 and 𝑘2 = 0.3. Looking at the
solid curves that indicate no cross-links, we see a transition from positive to negative normal stress for an increasing fiber dispersion
parameter 𝜅f . Note that for 𝜅f = 0.5 (isotropy), the stress 𝜎22 is compressive for 0 < 𝛾 < 1.744 and tensile for 𝛾 > 1.744, which can
be found by evaluating (76). From the dashed curves it can be seen that cross-links favor the change from compressive to tensile
lateral stress, as also shown by the sensitivities (77). In this example we have specified the dimensionless cross-link stiffness and
the cross-link-fiber interaction parameter as 𝜈̄ = 𝜈∕𝜇 = 2 and 𝑐 = 𝑐∕𝜇 = 3. Again, we want to point out the opposite influence of
the fiber dispersion on the lateral normal stress compared to the case of horizontal mean fiber directions discussed in Section 3.2.1,
i.e. the more the fibers are dispersed, the less/more the body wants to expand in the lateral direction in case of vertical/horizontal
mean fiber directions.

3.2.3. Inclined mean fiber direction
Finally, we consider an inclined mean fiber direction and want to investigate the influence of the fiber-independent cross-link

dispersion governed by the parameter 𝜅c ∈ [ 1∕𝜋, 1∕2 ]. For the sake of simplicity, we neglect the fiber dispersion 𝜅f = 0. Then the
expression (68) for the lateral normal stress simplifies to

𝜎 = −
𝜇
𝛾2 + 𝐴+ + [ 2𝛹̃ ′(𝐼 ) + 𝐵+ ] cos2 𝜙 + 𝜅 (2𝐴− + 𝐵−) sin 2𝜙 . (78)
22 3 f 4 c
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Fig. 8. Simple shear (inclined alignment of the fibers 𝜙 = 70◦): lateral normal stress for different cross-link dispersion parameters 𝜅(1)
c = 1∕2 (ideal cross-link

lignment), 𝜅(2)
c = 0.42 and 𝜅(3)

c = 1∕𝜋 (uniform distribution of cross-links). The solid curves correspond to cross-links with dimensionless stiffness 𝜈̄ = 𝜈∕𝜇 = 2.5
and the dashed curves to cross-links with dimensionless stiffness 𝜈̄ = 𝜈∕𝜇 = 0.8. In both cases, the dimensionless cross-link-fiber interaction parameter 𝑐 = 𝑐∕𝜇 is
et to zero. The dash-dotted curve shows the behavior without cross-links. The other material parameters are chosen as 𝑘̄1 = 𝑘1∕𝜇 = 1∕3 and 𝑘2 = 0.3.

rom there, we compute the sensitivity
𝜕𝜎22
𝜕𝜅c

= 2𝜅c𝛾(4𝜈 + 𝑐)(𝛾 sin 2𝜙 − 2 cos 2𝜙) sin 2𝜙 , (79)

which is non-negative for all 𝛾 ≥ 0 if and only if 𝜙 = 0◦ or 𝜙 ≥ 45◦. Therefore, for this range of fiber angles, the lateral normal stress
22 increases with increasing cross-link dispersion parameter 𝜅c, i.e. the more the dispersed cross-links are, the less the (global)

stiffness becomes, see Fig. 8. Here, different cross-link stiffnesses 𝜈̄ = 𝜈∕𝜇 ∈ {0, 0.8, 2.5} are chosen and the interaction between
the fiber and the cross-link is not taken into account (𝑐 = 𝑐∕𝜇 = 0). The dimensionless fiber-related material parameters are set to
𝑘̄1 = 𝑘1∕𝜇 = 0.3 and 𝑘2 = 0.3. Again, we observe that the presence of (sufficiently stiff) cross-links leads to a tendency of approaching
top and bottom faces. With that in mind, we take a look at the sensitivity, i.e.

𝜕𝜎22
𝜕𝜈

= 𝛾2 + 4𝜅c𝜈(𝛾 sin 2𝜙 − 2 cos 2𝜙) sin 2𝜙 , (80)

which is non-negative for all 𝛾 ≥ 0 if and only if 𝜙 = 0◦ or 𝜙 ≥ 45◦. Hence, for acute fiber angles 𝜙, an increase in cross-link stiffness
can lead to a stress decrease, at least locally, i.e. to an increase in compressive stress.

4. The Poynting effect under pure torsion

Now we want to consider the nonhomogeneous problem of pure torsion. We take a long circular hollow cylinder with an initial
inner radius 𝑎0 and an initial outer radius 𝑏0 subjected to a twisting moment at its ends. We choose cylindrical coordinates (𝑅,𝛩,𝑍)
nd (𝑟, 𝜃, 𝑧) with associated unit base vectors (𝑬𝑅,𝑬𝛩,𝑬𝑍 ) and (𝒆𝑟, 𝒆𝜃 , 𝒆𝑧) built at points of the reference and current configuration,

respectively. The deformation map takes on the form

𝜑𝑟 = 𝑅 , 𝜑𝜃 = 𝛩 + 𝜗𝑍 , 𝜑𝑧 = 𝑍 , (81)

where 𝜗 denotes the twist per unit length. The right Cauchy–Green tensor becomes

𝑪 = 1 + 𝑅2𝜗2𝑬𝑍 ⊗ 𝑬𝑍 + 2𝑅𝜗 sym[𝑬𝛩 ⊗ 𝑬𝑍 ] . (82)

Comparing the deformation tensors (84)2 defined below and (63)2 we observe that the inhomogeneous deformation of pure torsion
can locally be identified with the deformation mode of simple shear (formally replace 𝑅𝜗 by the amount of shear 𝛾). For the sake
of simplicity, we only consider one fiber family in the following, which is symmetrically dispersed in the (𝑬𝛩,𝑬𝑍 ) planes. It is
assumed that the dispersion of the cross-links is only induced by the fiber dispersion and the dispersion parameters 𝜅 and 𝜅c are
represented by (28). The material is assumed to be incompressible and the invariants are built by the right Cauchy–Green tensor
(82). We are particularly interested in the resultant normal force 𝑁 , which acts on one end of the cylindrical specimen and is
necessary to maintain the deformation. Note that this Poynting effect under torsion has to be investigated separately from that
under simple shear, since the axial normal stress 𝜎𝑧𝑧 due to torsion can spatially switch its sign without changing the compressive
or tensile nature of the resultant normal force, see also Horgan and Murphy (2017). With that in mind, recall that we are observing
for the simple shear configurations discussed in Sections 3.2.1 and 3.2.2 a switch in the sign of the lateral normal stress at certain
deformation levels.

We consider the push-forward of the second Piola–Kirchhoff stress tensor (15), which gives the Cauchy stress tensor
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𝝈 = 𝑝1 + 𝜇𝒃 + { 2𝜅f 𝛹̃ ′
f (𝐼4) + 𝜅f𝐵

+ + 𝐴+ + [ 𝜅f𝐵+ − (1 − 2𝜅f )𝐴+ ] cos 2𝛽 }
(2)
𝒃

+ (1 − 2𝜅f )[ 2𝛹̃ ′
f (𝐼4) + 𝐵+ + (𝐵+ + 2𝐴+) cos 2𝛽 ]𝒎⊗𝒎

+ [ (1 − 2𝜅f )(2𝐴− + 𝐵−) sin 2𝛽 ] sym[𝒎⊗𝒎n] (83)

in terms of the two- and three-dimensional left Cauchy–Green tensor
(2)
𝒃 =

(2)
1 + 𝑅2𝜗2𝑬𝛩 ⊗ 𝑬𝛩 + 2𝑅𝜗 sym[𝑬𝛩 ⊗ 𝑬𝑍 ] and 𝒃 =

(2)
𝒃 + 𝑬𝑅 ⊗ 𝑬𝑅 , (84)

and the push-forwards of the structural director and its normal

𝒎 = 𝑴 + 𝑅𝜗 cos𝜙𝑬𝛩 and 𝒎n = 𝑴n + 𝑅𝜗 sin𝜙𝑬𝛩 . (85)

The expressions 𝐴± and 𝐵± are given in (43) and depend on the invariants 𝐼± and 𝐼⋆±8 specified below. The shear stresses 𝜎𝑟𝜃
and 𝜎𝑟𝑧 in (83) vanish. All non-zero components of the Cauchy stress tensor (83) depend only on the radial coordinate 𝑅, and the
mechanical equilibrium condition (without volume loads and inertia) reduces to

𝑅 d
d𝑅

𝜎𝑟𝑟 − (𝜎𝜃𝜃 − 𝜎𝑟𝑟) = 0 , d
d𝑅

(𝑅2𝜎𝑟𝜃) = 0 , d
d𝑅

(𝑅𝜎𝑟𝑧) = 0 (86)

for 𝑅 ∈ (𝑎0, 𝑏0) together with the homogeneous boundary conditions 𝜎𝑟𝑟(𝑅 = 𝑎0) = 0 and 𝜎𝑟𝑟(𝑅 = 𝑏0) = 0. The conditions (86)2−3
are trivially fulfilled, whereas (86)1 serves as the equation for determining the Lagrange multiplier 𝑝, which is a function of 𝑅. The
resultant normal force 𝑁 , which acts on one end of the specimen, is simply calculated from

𝑁 = 2𝜋 ∫

𝑏0

𝑎0
𝜎𝑧𝑧𝑅 d𝑅 . (87)

Subtracting the zero term

𝜋𝑅2[ 𝜎𝑟𝑟(𝑏0) − 𝜎𝑟𝑟(𝑎0) ] = 𝜋 ∫

𝑏0

𝑎0

d
d𝑅

(𝑅2𝜎𝑟𝑟) d𝑅 (88)

from (87), by taking into account the equilibrium equation (86)1, we get an alternative representation for the resultant normal force
as

𝑁 = 𝜋 ∫

𝑏0

𝑎0
[ 2𝜎𝑧𝑧 − (𝜎𝑟𝑟 + 𝜎𝜃𝜃) ]𝑅 d𝑅 . (89)

ote carefully that the Lagrange multiplier 𝑝 does not arise in the latter integrand. Hence, the expression (89) is subsequently used
o calculate the normal force 𝑁 . We introduce the dimensionless quantity 𝑁̄ = 𝑁∕(𝜋𝜇𝑎20) and examine its variation with respect to
̄ = 𝜗 𝑎0. The direction 𝑴 of the mean fibers is now set to two cases.

.1. Axial mean fiber direction

First we consider mean fibers that are parallel to the axis of the cylindrical specimen, i.e. 𝑴 = 𝑬𝑍 . The invariants take the
pecific forms

𝐼1 = 3 +𝑅2𝜗2 , (90)
𝐼4 = 𝜅f + (1 − 𝜅f )(1 + 𝑅2𝜗2) , (91)

𝐼± = 1
2
[ 2 + 𝑅2𝜗2 + 𝑅𝜗(1 − 2𝜅f )(𝑅𝜗 cos 2𝛽 ∓ 2 sin 2𝛽) ] , (92)

𝐼⋆±8 = 𝐼4 cos2 𝛽 ∓ 𝑅𝜗(1 − 2𝜅f ) sin 𝛽 cos 𝛽 (93)

in terms of the angle 𝛽 describing the orientation of the cross-links relative to a parallel pair of dispersed fibers. From (83) we can
extract the Cauchy normal stresses in the radial, azimutal and axial directions

𝜎𝑟𝑟 = 𝑝 + 𝜇 , (94)

𝜎𝜃𝜃 = 𝑝 + (1 +𝑅2𝜗2){𝜇 + 2𝜅f 𝛹̃ ′
f (𝐼4) + 𝜅f𝐵

+ + 𝐴+ + [𝜅f𝐵+ − (1 − 2𝜅f )𝐴+] cos 2𝛽 }

+ 𝑅2𝜗2(1 − 2𝜅f ) [ 2𝛹̃ ′
f (𝐼4) + 𝐵+ + (𝐵+ + 2𝐴+) cos 2𝛽 ]

− 𝑅𝜗(1 − 2𝜅f )(2𝐴− + 𝐵−) sin 2𝛽 ,

(95)

𝜎𝑧𝑧 = 𝑝 + 𝜇 + (1 − 𝜅f ) [ 2𝛹̃ ′
f (𝐼4) + 𝐵+ ] + 𝐴+ + [𝜅f𝐵+ + (1 − 2𝜅f )(𝐴+ + 𝐵+)] cos 2𝛽 . (96)

The expression for the dimensionless normal force 𝑁̄ obtained from (89) is quite long and is not explicitly given here. However,
we note that it contains the imaginary error function erfi[𝑚(1 − 𝜅f )𝜗̄2], 𝑚 > 0, defined as erfi(𝑥) = −i erf(i𝑥). In the undeformed state
𝜗̄ = 0 we have to be aware of the limit property lim𝑥→0 erfi(𝑥)∕𝑥 = 2∕

√

𝜋 to get 𝑁̄ = 0.
We start by setting the relative cross-link orientation to 𝛽 = 90◦ and find 𝐼⋆±8 = 0, i.e. the mechanical response is independent of

he cross-link-fiber interaction parameter 𝑐. The relevant dimensionless material parameters are specified as 𝑘̄ = 𝑘 ∕𝜇 = 1, 𝑘 = 0.3
1 1 2
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𝑐

Fig. 9. Pure torsion (𝜙 = 0◦): normal force response for cross-link orientations (a) 𝛽 = 90◦ and (b) 𝛽 = 30◦ for different values of the fiber dispersion parameter
𝜅(1)
f = 0 (ideal fiber alignment), 𝜅(2)

f = 0.1, 𝜅(3)
f = 0.25 and 𝜅(4)

f = 0.45. The ratio between the outer and the inner radius of the cylindrical specimen is chosen to
be 𝑏0∕𝑎0 = 2. The solid curves show the behavior without cross-links and the dashed curves with cross-links, where we set 𝜈̄ = 𝜈∕𝜇 = 2 in (a) and additionally
̄ = 𝑐∕𝜇 = 1 in (b). The other material parameters are 𝑘̄1 = 𝑘1∕𝜇 = 1 and 𝑘2 = 0.3. The dash-dotted curve in (a) shows the mechanical response for the isotropic
ground material of the neo-Hookean type.

and 𝜈̄ = 2, as well as the ratio between the outer and inner radius of the cylindrical specimen is set to 𝑏0∕𝑎0 = 2. Fig. 9(a) shows
the dimensionless normal force 𝑁̄ over 𝜗̄ for different values of the fiber dispersion parameter 𝜅f . The solid curves indicate the
behavior without cross-links and the dashed ones with cross-links. First, we observe that the presence of perfectly aligned fibers
(the cross-links do not play a role for 𝜅f = 0) leads to a tensile normal force, at least for moderate deformations, while a specimen
that just consists of the neo-Hookean ground material exhibits a compressive normal force as shown by the dash-dotted curve.

Remark. Note that in case of simple shear, the lateral normal stress vanishes for the additional condition of plane stress imposed on
an incompressible neo-Hookean material. In contrast, for the (slightly) compressible ansatz depicted in Fig. 6 (or the incompressible
ansatz using a stored-energy function with 𝜕𝐼2 𝛹̃ > 0 under the additional condition of plane stress) a negative lateral normal stress
is observed, i.e. the positive Poynting effect under torsion can be transferred to the deformation mode of simple shear.

As the fibers get dispersed, the normal force decreases until it changes its sign. In a certain range of 𝜅f this tendency is
‘accelerated’ by the presence of cross-links – at least in the region of moderate deformations – as can be seen for 𝜅f = 0.1 in
Fig. 9(a), i.e. the solid curve lies above the dashed one. However, when the fibers are sufficiently dispersed, this trend is reversed
by the presence of cross-links, as can be seen for 𝜅f = 0.45 in the domain of moderate deformations, i.e. part of the solid curve lies
below the dashed one. This is because with a high fiber dispersion, more cross-links are closely oriented in the direction 𝑴 = 𝑬𝑍 .

Next, we consider the case 𝛽 = 30◦, which is depicted in Fig. 9(b). We choose the same dimensionless material parameters 𝑘̄1,
𝑘2 and 𝜈̄ as before and we additionally set 𝑐 = 𝑐∕𝜇 = 1. Again, we take 𝑏0∕𝑎0 = 2. We observe that fiber dispersion leads to a
decrease in the tensile normal force for the setup with and without cross-links. In contrast to the previous cross-link configuration
with 𝛽 = 90◦, the cross-links ‘slowdown’ the tendency to switch the sign of the normal force in the moderate deformation range
for all possible fiber dispersion parameters, i.e. parts of the solid curves lie below the dashed ones. This is because at the cross-link
orientation 𝛽 = 30◦ the stiffest configuration can be expected in the range of moderate deformations when the fibers are perfectly

aligned along 𝑴 = 𝑬𝑍 .
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Fig. 10. Pure torsion (𝜙 = 90◦): normal force response for cross-link orientations (a) 𝛽 = 90◦ and (b) 𝛽 = 30◦ for varying values of the fiber dispersion parameter
𝜅(1)
f = 0 (ideal fiber alignment), 𝜅(2)

f = 0.1, 𝜅(3)
f = 0.3 and 𝜅(4)

f = 0.45. The geometry of the cylindrical specimen is specified by the ratio 𝑏0∕𝑎0 = 2. The solid curves
indicate the behavior without cross-links and the dashed curves with cross-links, where in (a) we set 𝜈̄ = 𝜈∕𝜇 = 2 and additionally 𝑐 = 𝑐∕𝜇 = 1 in (b). The other
material parameters are 𝑘̄1 = 𝑘1∕𝜇 = 1 and 𝑘2 = 0.3.

4.2. Azimutal mean fiber direction

Second, we take the mean fibers to be oriented along the azimutal direction, i.e. 𝑴 = 𝑬𝛩. The invariants specify to

𝐼4 = (1 − 𝜅f ) + 𝜅f (1 + 𝑅2𝜗2) , (97)
𝐼± = 1 + 𝜅f𝑅

2𝜗2 ± 𝑅𝜗(1 − 2𝜅f )(sin 2𝛽 ± 𝑅𝜗 sin2 𝛽) , (98)
𝐼⋆±8 = 𝐼4 cos2 𝛽 ± 𝑅𝜗(1 − 2𝜅f ) sin 𝛽 cos 𝛽 , (99)

and 𝐼1 is of course identical to (90). The Cauchy normal stresses in the radial, azimutal and axial directions are

𝜎𝑟𝑟 = 𝑝 + 𝜇 , (100)

𝜎𝜃𝜃 = 𝑝 + (1 +𝑅2𝜗2){𝜇 + 2𝜅f 𝛹̃ ′
f (𝐼4) + 𝜅f𝐵

+ + 𝐴+ + [𝜅f𝐵+ − (1 − 2𝜅f )𝐴+] cos 2𝛽 }

+ (1 − 2𝜅f ) [ 2𝛹̃ ′
f (𝐼4) + 𝐵+ + (𝐵+ + 2𝐴+) cos 2𝛽 ]

+ 𝑅𝜗(1 − 2𝜅f )(2𝐴− + 𝐵−) sin 2𝛽 ,

(101)

𝜎𝑧𝑧 = 𝑝 + 𝜇 + 2𝜅f 𝛹̃ ′
f (𝐼4) + 𝜅f𝐵

+ + 𝐴+ + [ 𝜅f𝐵+ − (1 − 2𝜅f )𝐴+ ] cos 2𝛽 . (102)

From (89) we get the dimensionless normal force 𝑁̄ , whose expression is quite long and is not explicitly given here. However, we
mention that it contains the term erfi[𝑚𝜅f 𝜗̄2], 𝑚 > 0, and again we have to be aware of the limit property of the imaginary error
function for 𝜅f → 0 (perfect fiber alignment) or 𝜗̄ → 0.

We fix the relative cross-link orientation to 𝛽 = 90◦ and find 𝐼⋆±8 = 0 as before, i.e. the mechanical response does not depend
on the cross-link-fiber interaction parameter 𝑐. As in Section 4.1 the other material parameters are set to 𝑘̄1 = 𝑘1∕𝜇 = 1, 𝑘2 = 0.3
and 𝜈̄ = 𝜈∕𝜇 = 2, and we set 𝑏0∕𝑎0 = 2. Fig. 10(a) shows the dimensionless normal force 𝑁̄ versus 𝜗̄ for varying values of the
fiber dispersion parameter 𝜅f . We observe a pronounced difference between the normal forces for cross-linked and non cross-linked

cylindrical specimens under torsion. In the presence of cross-links, increasing fiber dispersion decreases the overall stiffness in
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the moderate deformation range. Again, this is not surprising since we can expect that cross-links oriented along the cylindrical
specimen’s axis 𝑬𝑍 provide the stiffest configuration. Without cross-links we observe a compressive normal force. If the fiber
dispersion is sufficiently high, the fibers are oriented more closely in the direction 𝑬𝑍 , which leads to a tendency to change the
sign of the normal force in the moderate deformation range, as can be observed better from the solid curves in Fig. 10(b).

Finally, we consider a cross-link orientation given by the angle 𝛽 = 30◦. This scenario is depicted in Fig. 10(b). We choose
the same dimensionless material parameters 𝑘̄1, 𝑘2 and 𝜈̄ as before and choose additionally 𝑐 = 𝑐∕𝜇 = 1. Again we set 𝑏0∕𝑎0 = 2.
From the dashed curves it can be clearly seen that the presence of cross-links coupled with a sufficiently high fiber dispersion leads
to a switch in the sign of the normal force for moderate deformations. In contrast, without cross-links, the normal force remains
compressive.

5. Conclusion

In this study, we developed a plane strain continuum model that accounts for a statistical orientation distribution of fiber-
connecting cross-links. It is essentially based on two geometric considerations, namely a cross-link dispersion induced by fiber
dispersion and a fiber-independent dispersion of cross-links. Both mechanisms define the structure tensors that govern the invariants
that enter the stored-energy function. The kinematics is based on a classical multiplicative split of the deformation gradient into
volumetric and isochoric parts, which, however, was only applied to the isotropic part in order to obtain physically meaningful
results. The proposed model has been examined in detail for the cases of homogeneous uniaxial extension and simple shear. We
observe a stiffening of the tissue due to the presence of cross-links and a significant dependence of the stress response on the
statistical orientation distribution of fibers and cross-links.

In the case of simple shear deformation, particular attention was paid to the normal stress generated perpendicular to the shear
planes (Poynting effect). We used a compressible formulation to describe the isochoric deformation of simple shear. This was done
to remove the sensitivity of the sign of the normal stress considered, which results from the additional constraint that needs be
imposed to evaluate the Lagrange multiplier in the case of an incompressible material. We found that the cross-links play a major
role in the deformation behavior of the specimen perpendicular to the shear direction, i.e. when the shear planes tend to move
apart (negative normal stress) or tend to contract (positive normal stress). For example, in the case of a horizontal (mean) fiber
direction, we found that sufficiently stiff cross-links switch the considered normal stress from compression to tension. Therefore,
one may suspect that the tensile normal stress effects observed in simple shear experiments of biopolymers are (not only, but also)
related to the presence of cross-links in the material.

Finally we considered pure torsion applied to a circular hollow cylinder. We studied the associated Poynting effect, i.e. the axial
normal force that is necessary to maintain the deformation. We have again found that the cross-linked fibrous microstructure has a
pronounced influence on the mechanical (tensile or compressive) response of the specimen.
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