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Abstract. Computer-assisted surgery is a trending topic in research, with many
different approaches which aim at supporting surgeons in the operating room.
Existing surgical planning and navigation solutions are often considered to be
distracting, unintuitive or hard to interpret. In this work, we address this issue
with an approach based on mixed reality devices like Microsoft HoloLens. We
assess the depth sensing capabilities of Microsoft HoloLens, and the potential
benefit they could bring to computer-assisted surgery applications.

Keywords: Computer-assisted surgery � Mixed reality � HoloLens �
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1 Introduction

Surgical resection of the tumoral mass is one of the primary treatments that patients
affected by cancer in the head and neck area must undergo. Due to the high inva-
siveness of the procedure and the risk of relapses, it is crucial for the surgeon to quickly
and precisely evaluate the location and extension of the tumor. As noted by the
American National Institutes of Health (NIH) [1], while medical imaging and operating
microscopes currently aid the surgeon during this operation, neither of these tools can
provide direct visualization of the mass to be removed. This work wants to further
investigate the usability of mixed-reality (MR) devices as a visualization aid for a
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surgeon in the aforementioned scenario [2]. Recent advancements in MR sparked new
research effort towards the introduction of this technology in the operating room, with
Microsoft HoloLens representing a common hardware choice. An example of this trend
is given by Perksin et al. [3], where they evaluate the role of mixed reality during breast
cancer surgery, or the work from Pratt et al. [4], on augmented reconstruction surgery.
A relevant contribution regarding head and neck surgery is given by Wang et al. [5],
who employed a video-see-through AR headset to visualize CT imaging data directly
on the patient. Pepe et al. [6] suggested a MR-based application, which features
automatic marker-less image registration and a hands-free interface for the facial sur-
geon. However, their approach is limited by the spatial reasoning capabilities of the
device, which only exposes a coarse map of the environment. This is unsuitable for the
accuracy required for medical applications. The capabilities of the device have recently
been expanded, allowing researchers to access more of its onboard sensors data,
therefore we aim at exploiting these new capabilities. In particular Time-of-Flight
(ToF) depth sensor, which enabled us to turn the HoloLens into an all-in-one visual-
ization and measuring tool. Furthermore, an approach for improved object-to-patient
registration is proposed. Our method, in fact, combines the newly enabled depth-
awareness of the headset with insight from pattern recognition algorithms to accurately
detect a patient’s facial traits and locate them in the user’s frame of reference.

2 HoloLens Measuring Capabilities

Following the idea from Pepe et al. [6], we develop a MR image registration system
based on the Dlib face recognition library [7–10], which detects a number of the
patient’s facial landmarks in the frames obtained from the device RGB camera. These
landmarks are then identified on the 3D model built from the patient’s CT scan so that
each key point can be matched to its corresponding point in the camera frame. A major
difficulty with this approach lies in the assessment of the patient’s position in the
camera’s optical axis direction. To reconstruct the 3D coordinates of the detected
landmark points, Pepe et al. use the combined information of the camera intrinsic
parameters and the rough spatial mapping depth estimation. Spatial mapping however,
was not designed for fine distance measurements and it is therefore not the ideal
candidate for this task.

2.1 Research Mode

In April 2018, Microsoft released a Windows 10 update, which unlocks the so-called
Research Mode on the HoloLens headset. Research Mode is a tool aimed at granting
developers with an extended access to the data collected by the headset built-in sensors
[11]. This provides APIs to three different data sources:

– Four environment tracking cameras used by the system for map building and head
tracking.
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– Two ToF depth cameras, one for high-frequency (30 FPS) near-depth sensing,
commonly used in hand tracking, and the other for lower-frequency (1FPS) far-
depth sensing, currently used by the SLAM-based Spatial Mapping.

– Two versions of an IR-reflectivity stream used by the HoloLens to compute depth.

As depth perception was found to represent a major obstacle in previous studies [6],
in this work we only considered the short-range depth data, streaming at 30 frames per
second (FPS). This choice was also driven by accuracy reasons - ToF sensors per-
formances exponentially degrade with the distance and by the fact that surgeons
generally operate within the arm distance from the patient.

2.2 Range Images Un-Projection

Cameras produce 2D images projecting a set of 3D points in the physical world onto a
plane, thus reconstructing a 3D model of the camera view from its 2D representation
requires some knowledge about the camera projection model. This model depends on
physical and optical features of the camera, usually device-specific and hard to retrieve
without the manufacturers aid. Microsoft provides a representation of the HoloLens
depth camera model in the form of an un-projection mapping, namely a transformation
that maps pixel coordinates to a unit-depth plane [12].

With reference to Fig. 1, let us call [X, Y, Z] the 3D coordinates of a point in the
real world and [x, y, 1] the coordinates of the point projected on the unit-depth plane.
The un-projection mapping specifies, for each point on the projection plane, a pair of
[u, v] values such that [X, Y, Z] = Z * [u, v,1]. The mapping values come arranged in
two 448 � 450 matrices – one for u values and one for v values – so that to each pixel
in the depth frame correspond a unique pair [u, v]. This means that all we need now in
order to reconstruct the cameras 3D view is the Z coordinate of the un-projected points.
As before mentioned, research mode provides a stream of range images, which define

Fig. 1. Illustration of the geometry of the projection process.
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for each pixel a value of distance, measured from the target point to the camera center.
However, Fig. 1 clearly shows that this distance does not correspond to the Z coor-
dinate of the target, which we can retrieve through the (u, v) values.

Now, to retrieve the desired 3D coordinates, we apply the mapping over the whole
depth frame as follows: if Zij is the Z value of the pixel on the i-th row and the j-th
column and uij and vij are the un-projection mapping parameters, we transform the pixel
in Z11 with the corresponding (u, v) values so that [X1, Y1, Z1] = Z11 � [u11, v11,1].
This process theoretically leaves us with 448 � 450 = 201600 – 3D points, of which, in
practice, more than a half are discarded through background removal.

2.3 Measurements on a Reconstructed 3D Scene

As we propose to use Microsoft HoloLens as a high-precision depth sensing tool, it is
crucial that we assess the accuracy performance of the device in different measurement
scenarios. Here we consider three scenarios:

– planar surfaces,
– simple 3D objects,
– a complex 3D object.

To perform the measurements, the recordings of the depth sensor were downloaded
from the HoloLens, then the relative point clouds were extracted and analyzed in
MATLAB, using the built-in point clouds visualizer. As light interferences can neg-
atively affect IR-based depth sensing, the recordings were carried out in an environ-
ment as isolated from sunlight as possible, using the on-board IR projector for
illumination. For planar surface measurements, we observed a wall in the laboratory,
assumed to be perfectly flat. We then employed a RANSAC-based algorithm [13] to fit
a plane to the extracted point cloud and we measured the mean squared error over all
the inlier points. The depth sensor is located on top of the user’s head, and therefore
moves together with it. Due to this fact, it is difficult to accurately establish a ground
truth for absolute distance measurements. Thus, for the remaining measurements, we
decided to maintain a simple setup and to only consider relative distances. The last
measurement scenario is worth of particular attention, as this is also a testbed for the
actual medical application. The used object was a 3D-printed model built from a high-
precision scan of a head-cancer patient; the same employed by Pepe et al. [6] to test the
final application. To recover the ground truth for the measurement, we loaded the mesh
from which the model was printed into a 3D visualization software, as shown in Fig. 2.
Here, we determined the distance of the nose tip from the flat back of the head, to
simulate a patient lying face-up on an operating bed. Then, for the actual measure-
ments, we analyzed several reconstructed views of the 3D head, recorded at arm
distance. Eventually, we exploited MATLAB plane fitting to determine the parameters
of the head’s bearing plane, selected the farthest point from such plane and took the
distance as our “nose tip - to - plane” measure.
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2.4 RGB-Depth Mapping Pipeline

In order to enhance the RGB camera-based face detection algorithm developed by Pepe
et al. [6], it was necessary to map depth values produced by the ToF sensor to the
frames shot by the HoloLens front-facing camera. The task was not trivial due to the
misalignment between the two camera views and to the differences in field of view
(FOV) and resolution, highlighted in Fig. 3.

Fig. 2. The 3D model of a patient head visualized in MeshLab to define a ground truth for the
measurements.

Fig. 3. A quasi-synchronized shot from the RGB camera (left) and the short-range depth camera
(right).
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For devices developed with depth measurements in mind, manufacturers usually
provide in-house produced calibration results, as the procedure requires rather complex
setups and high-precision instrumentation. This was not the case for HoloLens, for
which Microsoft only released scarcely documented, partial pieces of calibration data.
For this reason, a significant part of the present work was devoted to delineating the
RGB-to-Depth mapping pipeline.

2.5 The Mapping Pipeline

In order to map depth information on RGB frames, we need to find a transformation
between the two camera views. This transformation can be expressed through a 4 � 4
roto-translation matrix, composed by a 3 � 3 matrix and a 1 � 3 vector, which hold
information about the relative rotation and translation, respectively, between two
cameras’ frames of reference. In practice, as illustrated in Fig. 4, the whole process can
be reduced to a series of transformations: from the depth camera 2D projection space to
its relative 3D Coordinate System, then to the RGB Coordinate System and finally back
to the RGB projection space. One major issue with this approach lies in the temporal
misalignment between the recordings of the two sensors. In fact, the HoloLens API
does not allow access to the RGB and Depth data streams at the same time [14], leading
to a fluctuating mismatch between the frames acquisition time. Because of this, we are
forced to consider the sensors as if they were constantly moving with respect to each
other. Therefore, the sensors relative position has to be calculated for each pair of
frames we want to map between.

Initially, we un-project the depth frame pixels to 3D coordinates as discussed in the
previous section. Then, we calculate the absolute poses of the sensors. We achieve this
by combining the Frame to Origin and the Camera View Transformation 4 � 4
matrices, accessible through the HoloLens API [15]. Finally, we calculate the

Fig. 4. A scheme of the process of locating frames acquired with HoloLens in the real world
(https://docs.microsoft.com/en-us/windows/mixed-reality/locatable-camera).
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transformation between Depth and RGB cameras coordinates, from which the relative
pose can be derived as follows:

Let the cameras C1 and C2 have respective camera poses Pw1 ¼ R1 t1
0 1

� �
and

Pw2 ¼ R2 t2
0 1

� �
, where W denotes the world’s frame of reference, R is a 3 � 3

rotation matrix and t a 3 � 1 translation vector. We want to find the transformation
matrix P21 that defines the transformation from C1 to C2. We can just use PW1 and PW2

to find this, since they share a similar view. The first step is to convert a point q1 in the
C1 space to a common world space through PW1:

qw ¼ t1 þR1 * q1 ð1Þ

Now, given a point qw in the world’s frame of reference, we can invert the camera
pose transformation to write a point q2 in C2 as:

q2 ¼ R�1
1 � qw � t2ð Þ ð2Þ

Substituting (1) in (2) we obtain P21, the searched transformation from a source
camera space - C1 - to a target camera space - C2 - so that:

q2 ¼ P21 � q1 ð3Þ

where:

P21 ¼ R�1
2 R�1

2 ðt2 � t1Þ
0 1

� �
ð4Þ

Applying (4) to our point cloud through simple matrix multiplication brings the 3D
points to the RGB camera’s coordinate system. Finally, the transformed points are
projected back to the RGB frame through the RGB camera’s intrinsic parameters [16]
provided by the camera API.

Once we have projected the points back to the RGB frame, we have to make sure
that our depth values refer to points that are actually in the RGB camera view. In fact,
as the depth sensor produces ultra-wide FOV images, some of the obstacles detected
will not appear at all in the correspondent RGB camera frame. Moreover, as the RGB
camera captures frames at a much higher resolution than the depth sensor, many pixels
in the RGB frame just will not have a depth value assigned. Figure 5 shows an example
of the proposed RGB-Depth mapping performed on a separate machine with the data
recorded on the HoloLens.

2.6 Depth-Enhanced Landmark Detection

This section will discuss the steps taken in order to enhance the hologram to patient
registration algorithm proposed in [6] with the acquired depth information. The RGB-
Depth mapping process illustrated above, enabled us to assign a “distance” value to
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pixels in the RGB frames, which we can use to better estimate an object’s location in
the world. Moreover, through this approach, we could directly build upon the foun-
dation laid by Pepe’s team’s work, developed around the Dlib RGB-based face
detection algorithm.

In particular, we decided to use the depth data to correct the estimated position of
the patient’s nose tip, one of the landmark points searched by Dlib in order to recognize
a human face, like in Fig. 6.

With the mapped depth values in hand, we moved on in a similar fashion to Pepe’s
study: We determined the direction of the nose tip landmark point through pixel un-
projection. Then, we scaled its position according to the relative depth value, which for
a front facing subject is easily found as the point of the patient’s face closest to the
HoloLens user. This process provides us with an estimate of the patient’s head’s
position but doesn’t tell us about its orientation.

Fig. 5. An example of our RGB-Depth mapping. The white markings highlight the correspon-
dence between the frames.

Fig. 6. The Dlib face detection software locating the face landmarks on a 3D-printed head [6].
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The task of recovering an object’s orientation with respect to the camera pose from
a set of 3D points and their projection on the frame is called a Perspectiven-Point
(PnP) problem and can be solved by common computer vision libraries like OpenCV.

3 Results

Due to the nature of the experience offered by HoloLens to the user, it can be hard to
assess its visualization performance objectively. Moreover, due to the very recent
release of Research Mode, there is, at the time of writing, close to no documentation
about the HoloLens depth sensor’s accuracy. For this reason, we decided to evaluate
the accuracy also in scenarios not exactly related to our particular use-case, to the
advantage of future studies relying on Research Mode data.

First, we considered a flat surface in our laboratory, to assess the smoothness of the
relative point cloud reconstruction. The measurement was repeated 10 times, by ana-
lyzing the point clouds extracted from 10 different depth frames, taken at a distance of
about 60 cm from a wall (Table 1).

Next, we performed relative distance measurements for 3D objects, namely a sharp-
edged wooden box and the 3D-printed head model already used for testing purposes.
For the box, the measure was performed on all the 3 dimensions, while for the 3D-
printed head only the nose tip-to-bearing plane distance was evaluated. Each mea-
surement was repeated 5 times and performed at a distance of about 60 cm from the
target (Table 2).

The primary goal of this work is to assess the effects of introducing additional depth
information in the hologram-to-patient registration process, reportedly one of the major
weak spots in Pepe’s study [6] (Table 3).

Table 1. HoloLens’ depth sensing accuracy - planar surface smoothness.

RMS error
(mean ± standard deviation)

2.4 ± 0.4 mm

Table 2. HoloLens’ depth sensing accuracy - wooden box dimensions.

Relative error in the back-front dimension
(mean ± standard deviation)

0.033 ± 0.018

Relative error in the up-down dimension
(mean ± standard deviation)

0.079 ± 0.028

Relative error in the right-left dimension
(mean ± standard deviation)

0.044 ± 0.021
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The technical results, shown in Table 4, are generally in line with what is found in
the previous study, but still interesting considering that this preliminary work only
exploits a very small portion of the available sensors’ data. Again, the measures were
repeated 5 times, at a distance of approximately 60 cm.

4 Conclusion

We evaluated the potential of the Microsoft HoloLens depth sensing capabilities in
enabling accurate and seamless imaging data visualization in maxillofacial surgical
procedures. In this work, we addressed the most prominent issue of the previous
implementations: the bottleneck in hologram-to-patient registration accuracy, which is
limited depth perception. Invaluable for this purpose was HoloLens’ Research mode,
which, only recently released by Microsoft, provided us with a stream of depth data
previously unavailable to researchers. First, the data, in the form of a stream of range
images, was processed in order to obtain a point cloud representation of the user’s
view. Then, a conversion pipeline, to map the depth information onto the RGB frames’
pixel was established. Given the only recent availability of the data, no information on
the sensor’s accuracy was found in literature, for this reason, an accuracy evaluation in
different measurement scenarios was performed. Ultimately, we proceeded to integrate
the mapped depth information into the RGB-based application developed in [6], as
pattern recognition techniques like the ones here employed for face detection can be
heavily affected by inaccurate spatial perception. Overall, our study found that the rich
set of on-board sensors can be exploited beyond its intended use user interface,
environment navigation - turning the headset in something more than a mere visual-
ization device. The accuracy evaluation, in fact, demonstrated the device potential for
millimeter-accuracy measurement, comparable to other commercially available sen-
sors. With regard to hologram registration, although only slight improvements from the
previous study were found, we see huge potential for more spatial aware HoloLens
applications. Future developments, in fact, could easily make more extensive use of the
headset sensors data, for example considering a 3D-to-3D registration approach, in
order to overcome the inherent flaws of two-dimensional pose estimation.

Table 3. HoloLens’ depth sensing accuracy - 3D-printed head facial features.

Relative error in the nose tip - to bearing plane distance
(mean ± standard deviation)

0.018 ± 0.011

Table 4. Hologram-to-patient registration error: comparison.

Measured value Proposed method Previous method

Error in the back-front dimension
(mean ± standard deviation)

3.8 ± 1.7 mm −4.5 ± 2.9 mm

Error in the up-down dimension
(mean ± standard deviation)

−8.6 ± 3.7 mm 3.3 ± 2.3 mm

Error in the right-left dimension
(mean ± standard deviation)

−2.2 ± 1.5 mm −9.3 ± 6.1 mm
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