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Abstract

The initiation and propagation of aortic dissection have not yet been fully elucidated. An essential role is attributed to
he degradation of inter-lamellar elastic fibers in the aortic media which causes a significant lowering of the radial strength.
nter-lamellar elastic fibers are aligned radially and contribute mainly to the cohesion of the lamellar units in the aortic media.
omputational studies that consider these pathological findings during aortic dissection are rare. In this study, we propose a
onstitutive model which incorporates the degeneration of inter-lamellar elastic fibers. For this purpose, the recently introduced
iscrete fiber dispersion model is applied to include symmetrically dispersed inter-lamellar elastic fibers in a strain–energy
unction. Damaged or degraded elastic fibers are excluded from the strain–energy function by introducing a degradation
arameter. Subsequently, the proposed model is implemented in a finite element program and verified with two representative
umerical examples, uniaxial extension and simple shear. An aortic dissection geometry with two distinct layers, motivated
rom patient data, is then created to study the influence of degraded radially-directed elastic fibers on the stress distribution in
n aortic dissection. In summary, the presented constitutive model is able to capture the degradation of inter-lamellar elastic
bers during aortic dissection. Moreover, the finite element analysis results of the patient-data motivated geometry suggest a
ossible mechanism triggering the dissection propagation.
c 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Constitutive modeling; Discrete fiber dispersion model; Finite element analysis; Fibrous tissue; Elastic fibers; Aortic dissection

1. Introduction

The first acute type A aortic dissection was described by Frank Nicholls in 1760 [1]. He was the personal
hysician of George II, King of England who died due to sustained fatal cardiac tamponade caused by an aortic
issection. It is valuable to read the interesting history of aortic dissection documented by Criado [2]. It seems
hat Erdheim [3,4] was the first who described cystic medial necrosis of the aorta, which are focal areas of tissue
estruction. Cystic medial necrosis is seen in surgical specimens of aortic dissection, and it seems to be related
ith higher risks of several aortic complications [5].
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Fig. 1. 2D schematic representation of the elastic lamellar sheets within the human aortic media oriented in the circumferential direction
E1. Interconnecting elastic fibers within the lamellar unit oriented radially (E3) building a 3D architecture: (a) healthy case; (b) diseased
case.
Source: SEM images are reprinted from Nakashima [21].

Aortic dissection is a rare but life-threatening cardiovascular disease, which may be initiated as a small tear
in the intimal (inner) layer of the aortic wall before it extends to the medial layer causing a wall separation.
Subsequently, the tear propagates along the longitudinal direction of the medial layer resulting in a false lumen
which may lead to vascular thrombosis. Some have hypothesized that a delamination of the medial layer caused
by an intraluminal hematoma instead initiates the aortic dissection, which triggers an intimal tear at a later stage
of the disease [6,7]. This controversy demonstrates that despite comprehensive studies from various research fields,
a fundamental explanation of the mechanisms initiating aortic dissection remains rather unknown. Nevertheless,
Humphrey [8] proposed that the predominant mechanisms can be summarized as follows: remodeling of collagen
fibers, degradation of elastic fibers, local accumulation of glycosaminoglycans, and loss and re-differentiation of
smooth muscle cells (SMCs). Those mechanisms are typically found in the media, but can also involve adjacent
layers. Each mechanism may not be solely responsible for the initiation of an aortic dissection, but the pathological
alteration of various constituents may promote the failure of the aortic wall. In many cases, the pathology of aortic
dissection coincides also with age-related alterations of the aortic wall. Studies have shown however that in most
cases the diseased aortic wall exhibits a more severe grade of the respective pathological alteration [9–11]. Besides,
there are other cardiovascular diseases, like diseases of the bicupid aortic valve [12–14], which show a similar
pathology to that found in aortic dissection.

Remarkably, Fig. 1 illustrates the healthy and diseased lamellar units of the medial layer which are arranged in
parallel to the luminal surface. The lamellar unit consists of fenestrated elastic lamellar sheets and radially-directed
inter-lamellar elastic fibers [15,16], which consist of amorphous elastin and microfibrils, respectively [8,17]. The
arrangement of the elastic lamellar sheet and inter-lamellar elastic fibers in the healthy and dissected human medial
layer is examined in some structural investigations [18–21]. Those investigations found that radially-directed inter-
lamellar elastic fibers are degraded in the diseased medial layer, whereas the elastic lamellae appeared almost normal.
In general, the degradation of elastic fibers in the medial layer of the aorta can be explained by either proteolytic
degradation or mechanical damage. As hypothesized by Humphrey [8] and later by Cikach et al. [22], inter-lamellar
elastic fibers can be mechanically damaged by an occurring (Donnan) swelling pressure between the elastic lamellae
in the extracellular matrix, which may be caused by the accumulation of pooled glycosaminoglycans. This suggests
a significant reduced cohesiveness of the lamellar units and the development of local inhomogeneities causing stress
concentrations. In consequence, the media may be more vulnerable to shear and dissecting forces in aortic dissection

due to the degradation of inter-lamellar elastic fibers.
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Following the hypothesis of Humphrey [8], the influence of pooled GAGs was studied by using semi-analytical
nd finite element-based continuum approaches [23,24]. These computational studies documented significant
ntramural stress concentrations around the accumulation of GAGs when an intra-lamellar (Donnan) swelling
ressure is present. Then, a particle-based computational model was proposed to study the role of pooled GAGs
n the initiation and propagation of intra-lamellar delamination [25,26]. Firstly, it was shown that the activation
f SMCs can prevent damage in the aortic wall, and, secondly, that the accumulation of GAGs may initiate and
ropagate the delamination by extending and coalescing. To the best of the authors’ knowledge, there are no further
omputational studies which examine on the influence of pooled GAGs in aortic dissections.

Other computational studies, however, have focused on modeling the initiation and propagation of the aortic
issection. This is accomplished by using damage models or numerical techniques which deal with displacement
iscontinuities caused by the delamination of the aortic wall. The first study on this topic is the one proposed by
asser and Holzapfel [27] who employed a continuum model to investigate the propagation of aortic dissection with

ohesive elements in a peeling test. They treated the aortic wall as a fiber-reinforced composite with collagen fibers
mbedded in an isotropic ground substance. A similar approach was used by Ferrara et al. [28], as an extension
o the model in Ferrara et al. [29]. These authors modeled the delamination of the aortic wall including cohesive
ffects. The various cohesive parameters of the model were determined by a sensitivity analysis. In contrast, Wang
t al. [30] used an energy approach on the basis of the energy release rate. They modeled the initiation of the tear
nd its propagation with the extended finite element method [31,32], and determined a critical pressure at which the
issection starts to propagate. The propagation of aortic dissection was described by a linear traction–separation law.
ore recently, the computational approach of Gültekin et al. [33] modeled the propagation of the false lumen with

the phase-field approach by prescribing a tear within a multi-layered segment of the aortic wall. The results of the
finite element analysis demonstrated that the dissection propagation follows a helical shape along the aorta which
aligns with the orientation of the collagen fibers. Moreover, the region proximal to the intimal tear was subjected
to significant damage. For completeness, interested readers are referred to some universal damage models for soft
tissues [34–36].

Micro-structure-based computational approaches were also employed to model the damage of individual
constituents of the aortic wall. For example, in the computational study of Shah et al. [37], a macro- and micro-scale
model of the aortic wall was incorporated to capture the disease-dependent damage of fibers. The micro-structure
of the aortic wall was defined by a network of collagen fibers embedded in a non-fibrous matrix described by
a neo-Hookean model. The failure of fibers was taken into account by applying a damage model with a failure
criterion on the basis of a critical stretch threshold. They performed uniaxial and biaxial extension tests to validate
the computational approach. Subsequently, Witzenburg et al. [38] extended this approach by using histological
observations. They modeled the lamellar unit of the media with 2D sheets of elastic and collagen fibers, which
were interconnected by SMCs and fibrillins. In contrast, Thunes et al. [39,40] proposed a structural model of the
medial lamellar unit including elastic and collagen fibers to obtain a better understanding of the initiation of aortic
dissection. Pal et al. [41] investigated the correlation between radially-directed collagen fibers and the delamination
strength by using a predictive mechanistic model, and data from the experimental study of Pasta et al. [42]. Most
recently, Yu et al. [43] published an approach to model the failure mechanics of dissection propagation on the basis
on an energy failure criteria. Two medial strips were defined for a peeling test which were connected by discrete
collagen fibers. Collagen fibers that exceeded the defined failure criteria were removed to model the dissection
propagation. They claimed to have published the first quantitative agreement between experimental results of a
peeling tests and a computational model which is based on microscopic features of the aortic constituents. The results
suggest an avalanche-like failure of the aortic wall. In a follow-up study [44], they compared the contribution of
elastic and collagen fibers in bonding of the aortic wall, and concluded that collagen fibers have a higher contribution
to the inter-lamellar stiffness, strength and toughness.

In the present study, we assume that the elastic lamellae and the inter-lamellar elastic fibers can be accounted
for by a dispersion of elastic fibers, as recently postulated by Holzapfel et al. [45]. Inter-lamellar elastic fibers are
assumed to be symmetrically dispersed in the lamellar unit of the media. In general, there are two main approaches
to model a dispersed fiber distribution, the generalized structural tensor approach and the angular integration (AI)
approach. In the work of Li et al. [46], those two approaches were summarized, and the discrete fiber dispersion
(DFD) model was introduced to formulate a strain–energy function which includes the dispersion of collagen fibers

while excluding fibers under compression. The authors incorporated the fiber dispersion as a summation of a finite
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number of discrete fiber contributions. In comparison with the continuous approach such as the AI method, the DFD
model reduces the computational costs significantly while maintaining accuracy and allowing for the exclusion of
fibers under compression [46]. In the DFD model, a unit hemisphere is first discretized into a finite number of
elementary areas such as spherical triangles, and a representative fiber direction at the centroid of each spherical
triangle is computed. A discrete fiber density for each representative fiber direction is then determined by numerical
integration of the continuous fiber probability density function (PDF) over the corresponding elementary area. The
accuracy of the integration depends strongly on the number of elementary areas. In this study, we use the DFD
model to account for the dispersion of elastic fibers in the medial layer of the aortic wall. Moreover, we introduce a
degradation parameter which excludes damaged or degraded elastic fibers from the strain–energy function to model
the degradation of radially-directed elastic fibers. The degradation initiates from the radial direction due to the
highest occurring stretch.

The outline of this study is as follows. In Section 2, we present the continuum mechanical framework of the
onstitutive model incorporating the degradation of elastic fibers. Briefly, the explicit form of the strain–energy
unction, the Cauchy stress and the elasticity tensors are formulated in a decoupled form, as needed for the
mplementation in a finite element code. In Section 3, we demonstrate the performance of the constitutive model
ith two representative numerical examples by using the finite element analysis program FEAP [47]. Subsequently,
e construct the geometry of an acute aortic dissection, motivated from patient data, with the commercial finite

lement analysis program Abaqus/Standard [48] to model the aortic dissection. Finally, the proposed constitutive
odel and the obtained computational results are discussed in Section 4, which is followed by suggestions for future

tudies.

. Degradation of elastic fibers

In this section, the continuum mechanical framework which incorporates the degradation of elastic fibers during
ortic dissection is presented. In addition, we describe the kinematics in order to formulate the strain–energy function
nd the corresponding Cauchy stress and elasticity tensors.

.1. Kinematics

The deformation map χ of a material point X located in the (undeformed) reference configuration B0 to a spatial
point x in the (deformed) current configuration B is defined as x = χ (X). To characterize the local deformation
at a material point, the deformation gradient F(X) is formulated as F(X) = ∂χ (X)/∂X. This relation allows us to
ormulate the map of the infinitesimal line element dX from the reference to the current configuration as dx = FdX.

e assume here an incompressible material so that the determinant of the deformation gradient J = det F(X) > 0,
r Jacobian, is always J ≡ 1. Thus, we follow the multiplicative decomposition of the deformation gradient [49,50],
nd decouple the deformation gradient F into a volumetric (dilatational) part J 1/3I and an isochoric (distortional) part

F = J−1/3F, where I denotes the second-order unit tensor. The symmetric right Cauchy–Green tensor, representing
a deformation measure in the reference configuration, and its modified counterpart is then given by C = FTF and
C = FTF, respectively, while the symmetric left Cauchy–Green tensor, related to the current configuration, and
its modified counterpart is provided by b = FFT and b = F FT

, respectively. Then, the first invariant I1 and its
odified counterpart Ī1 are defined as

I1 = trC = trb, Ī1 = trC = trb. (1)

e further introduce the fourth invariant I4 and its modified counterpart Ī4 as

I4 = C : N ⊗ N = n ⊗ n, Ī4 = C : N ⊗ N = n ⊗ n, (2)

where I4 represents the squared fiber stretch in a direction N, where N is defined in the reference configuration,
while n = FN and n = FN define the related directions in the current configuration. The direction N of a fiber can
be expressed by the polar angle Θ and the azimuth angle Φ so that we may write

N = sinΘ cosΦE1 + sinΘ sinΦE2 + cosΘE3, (3)

where E , i = 1, 2, 3, are the unit Cartesian basis vectors.
i

4
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Fig. 2. PDF of elastic fibers ρe represented by a von Mises distribution (7) with the radial vector ER and the concentration parameter
be = 1, mapped on the unit hemisphere. The unit hemisphere is discretized with 2m representative fiber directions Nn , n = 1, . . . ,m, (black
arrows) defined at the centroid of the respective spherical triangle.

2.2. Strain–energy function Ψ

We postulate a strain–energy function Ψ , or Helmholtz free-energy function, per unit reference volume, which
represents the passive material behavior of the aortic wall. The active material behavior generated by the SMCs is
neglected in this study. For the sake of computational efficiency, the strain–energy function is decoupled as

Ψ = Ψvol + Ψiso, (4)

where Ψvol and Ψiso represent the purely volumetric part and the isochoric part of the deformation, respectively [51].
We define the volumetric part as

Ψvol =
K
4

(J 2
− 1 − 2 lnJ ), (5)

here K is the bulk modulus, which is a penalty parameter to enforce the kinematic incompressibility constraint.
he isochoric part, which represents the respective constituents of the aortic wall, namely the ground substance Ψg,

he collagen fibers Ψc and the elastic fibers Ψe, is decomposed as

Ψiso = Ψg + Ψc + Ψe. (6)

As illustrated in Fig. 1, we assume that the elastic fibers in the elastic lamellae, and the inter-lamellar elastic fibers
an be accounted for as a dispersion of elastic fibers. For this purpose, the DFD model [46] was used to describe all
he elastic fibers as dispersed between the elastic lamellae. The rotationally symmetric fiber dispersion is represented
y an integrable PDF ρe(Θ,Φ), which is defined over the unit hemisphere as S = {(Θ,Φ)|Θ ∈ [0, π],Φ ∈ [0, π]}.

We define the PDF of elastic fibers by a von Mises distribution of the form

ρe(Θ,Φ) = 4

√
be

2π
exp

[
−2be(N · ER)2

]
erf
(√

2be
) , (7)

here erf(x) denotes the standard error function, and be represents the concentration parameter of elastic fibers,
hich describes a symmetric dispersion with respect to the radial vector ER. Generally, ER does not coincide with

he Cartesian axis E3. A representative illustration of the symmetric fiber PDF mapped on a unit sphere is shown
n Fig. 2.

Fig. 2 shows the discretization of the unit sphere into a finite number of elementary areas ∆Sn , n =

1, . . . ,m [46,52], which can be physically interpreted as the normalized number of fibers within the respective
elementary area. Here, we chose a spherical triangle as the elementary area for the discretization. At the centroid
of each elementary area we define a discrete fiber angle (Θ,Φ) which represents all the fibers distributed within
5
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the elementary area. Because of symmetry, we only need to discretize half of the unit sphere. After discretizing the
unit hemisphere into m elementary areas, we formulate the discrete density ρen of elastic fibers as

ρen =
1

2π

∫
∆Sn

ρe(Θ,Φ) sinΘdΘdΦ, n = 1, . . . ,m. (8)

We further have to fulfill the normalization condition which is by definition satisfied by the choice of (7). For the
discrete approach, we then rewrite the normalization condition over the unit hemisphere with (8), i.e.

m∑
n=1

ρen = 1. (9)

Following the DFD model, the total strain–energy function of elastic fibers Ψe in the reference configuration can
then be written in the discrete form as

Ψe =

m∑
n=1

ρenΨen(λ̄2
en), (10)

here Ψen(λ̄2
en) represents the strain–energy function associated with the fiber direction Nn of the elementary area

n. A single elastic fiber is treated similarly to a 1D element which bears load only in the direction of the fiber.
Therefore, Ψen(λ̄2

en) depends solely on the squared fiber stretch λ̄2
en = Ī4n = C : Nn ⊗ Nn , also known as the true

ber stretch [52], which implies that the fiber recruitment stretch is neglected. This is motivated by the observation
f different studies suggesting that elastic fibers in the aortic wall are always under tension [53]. We further assume
hat elastic fibers contribute to the strain–energy function only when they are under tension due to the wavy structure
f fibers in the aortic wall [54]. In addition, the fiber strain–energy function has also to satisfy

Ψen(1) = 0 and Ψ ′

en(1) = 0. (11)

Subsequently, we introduce a degradation parameter ξ ∈ [0, 1] to describe the damage of elastic fibers as a result
f the separation of the elastic lamellae, as illustrated in Fig. 1. In analogy to the continuum damage theory [51],
e define

ξ =

{
0 healthy,
1 completely diseased (damaged/degraded).

e further define a degradation or critical fiber angle Θξ = πξ/2 to exclude elastic fibers from the total
strain–energy function, i.e.

Ψen =

{
fen(λ̄2

en) if Θn ≥ Θξ and λ2
en ≥ 1,

0 else,
(12)

where fen represents a mathematical expression of the strain–energy function of a single elastic fiber. As shown
in Fig. 3, we exclude the elastic fiber from the total strain–energy function, which we interpret as diseased
(damaged/degraded), when the discrete fiber angle Θn is smaller than a critical fiber angle Θξ (Fig. 3). This is

otivated by the fact that elastic fibers aligned in the radial direction undergo the highest stretch under diseased
onditions, and, therefore, are more prone to rupture. As indicated above, the pathology of aortic dissection
emonstrates, inter alia, that the lamellar units are separated by a possible accumulation of GAGs which in turn
s similar to a delamination force acting on the lamellar units. This delamination force may act predominately in
he radial direction causing damage or degradation of elastic fibers. Thus, the definition of a critical fiber angle

ay be a valid assumption. The critical fiber angle Θξ depends on the stage of the aortic dissection. It increases as
he disease progresses. Note that we refrain here from introducing a physically-based evolution law of the elastic
ber degradation due to the lack of knowledge about the complex nature of tissue degradation in aortic dissection.

possible evolution law might be influenced by purely mechanical factors, but also by biochemical processes,
riggered by age- or disease-related factors, or pathological alterations in the blood flow. This makes it challenging
o use a physically-based evolution law.

Next, we define the strain–energy function of a single family of collagen fibers Ψc in terms of the DFD model,
s formulated in Li et al. [46], i.e.

Ψc =

m∑
ρcnΨcn(λ̄2

cn), (13)

n=1

6
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Fig. 3. Exclusion of damaged/degraded elastic fibers defined by the critical fiber angle Θξ : elastic fibers distributed outside the cone, such
as Nn+1, are excluded from the strain–energy function, whereas elastic fibers distributed inside the cone, such as Nn with the discrete
fiber angle Θn , are included. E1,E2 and E3 represent the unit Cartesian basis vectors in the circumferential, axial and radial directions,
respectively.

where ρcn defines the discrete density of collagen fibers, which is expressed by

ρcn =
1

2π

∫
∆Sn

ρc(Θ,Φ) sinΘdΘdΦ, n = 1, . . . ,m. (14)

urthermore, we define the PDF of collagen fibers by a von Mises distribution of the form

ρc(Θ,Φ) = 4

√
bc

2π
exp[2be(N · EM)2]

erfi
(√

2bc
) , (15)

here the collagen fiber distribution around the mean fiber direction EM is described by the concentration parameter
c, and erfi(x) = −ierf(ix) denotes the imaginary error function. Note that an additional family of fibers with specific
aterial and structural parameters can be additively augmented [55].
Recently, we demonstrated the importance of considering the recruitment stretch of collagen fibers [52].

he model approach therein is based on the observation that collagen fibers are often found crimped in the
nloaded configuration. Therefore, we assume that collagen fibers contribute only to the material response when
traightened [54]. This approach allows a smooth transition in the fiber stretch versus stretch curve from the wavy
r crimped fiber state to the straightened state. To exclude all discrete fibers under compression and crimped fibers
ithin a dispersion, the strain–energy function of a single collagen fiber is constrained by

Ψcn(λ̄2
cn) =

{
fc(λ̄2

cn) if λ2
cn ≥ 1,

0 if λ2
cn < 1,

(16)

here the squared true fiber stretch λ̄2
cn is given by

λ̄2
cn = λ̄2

c f /λ
2
cr . (17)

he parameter λ̄2
c f = Ī4n = C : Nn ⊗ Nn represents the current fiber stretch of collagen fibers, while λ̄cr represents

the critical fiber recruitment stretch that is defined as the stretch at which the fiber becomes straightened but it
does not bear any load [56]. By definition, λ̄cr is a material parameter. We specified a constant recruitment stretch
for all collagen fibers [52], and refer to Weisbecker et al. [57] for a computational approach to model a dispersed

recruitment stretch.

7
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Finally, the isochoric part of the strain–energy function including the explicit expressions for the respective
onstituents of the aortic wall is formulated as

Ψiso = Ψg( Ī1) +

m∑
n=1

ρcnΨcn(λ̄2
cn) +

m∑
n=1

ρenΨen(λ̄2
en). (18)

he ground substance is given by the (isotropic) neo-Hookean model, which depends on the first invariant Ī1 only,
i.e.

Ψg( Ī1) =
µ

2
( Ī1 − 3), (19)

here the constant µ (> 0) represents the shear modulus with the dimension of stress.
In summary, we have presented the specific form of the total strain–energy function by introducing an

dditive decomposition into a volumetric and an isochoric part. Note that we neglected the implementation of a
iscoelastic material behavior in the model framework due to insufficient experimental and theoretical evidences.
he implementation of the material model into a finite element analysis program requires the determination of the
auchy stress tensor and the elasticity tensor. In the following, only the derivation of the isochoric parts is presented.
or a comprehensive description the interested reader is referred to [51,58].

.3. Cauchy stress tensor

We differentiate the isochoric strain–energy function (18) with respect to C/2 to identify the fictitious second
Piola–Kirchhoff stress tensor S, i.e.

S = 2
∂Ψiso

∂C
= 2ψ ′

g( Ī1)I + 2
m∑

n=1

ρcnScn + 2
m∑

n=1

ρenSen, (20)

where ψ ′
g( Ī ) = ∂Ψg( Ī1)/∂ Ī1. The fictitious second Piola–Kirchhoff stress tensors for single collagen and elastic

fibers are denoted by Scn and Sen , respectively. In analogy to Li et al. [46], we formulate

Scn =

{
λ−2

cr f ′
c(λ̄2

cn)Nn ⊗ Nn if λ2
cn ≥ 1,

0 if λ2
cn < 1,

(21)

nd

Sen =

{
f ′
e(λ̄2

en)Nn ⊗ Nn if Θn ≥ Θξ and λ2
en ≥ 1,

0 else,
(22)

where f ′
c(λ̄2

cn) = ∂ fc(λ̄2
cn)/∂λ̄2

cn and f ′
e(λ̄2

en) = ∂ fe(λ̄2
en)/∂λ̄2

en . Applying the push-forward to (20) gives the fictitious
Cauchy stress tensor σ . Hence,

σ = J−1F S FT
= 2J−1

(
ψ ′

g( Ī1)b +

m∑
n=1

ρcnσ cn +

m∑
n=1

ρenσ en

)
, (23)

ith

σ cn =

{
λ−2

cr f ′
c(λ̄2

cn)nn ⊗ nn if λ2
cn ≥ 1,

0 if λ2
cn < 1,

(24)

nd

σ en =

{
f ′
e(λ̄2

en)nn ⊗ nn if Θn ≥ Θξ and λ2
en ≥ 1,

0 else,
(25)

here nn = FNn . Next let us introduce the fourth-order projection tensor P = I −
1
3 I ⊗ I furnishing the physically

orrect deviator in the Eulerian description. Then, the double dot product of the projection tensor and the fictitious
auchy stress tensor provides the isochoric Cauchy stress tensor, i.e.

σ = P : σ , (26)
iso

8
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where I denotes the symmetric fourth-order identity tensor, which can be represented by recalling the definition of
he Kronecker delta δad in component notation, i.e. (I)abcd =

1
2 (δacδbd + δadδbc).

.4. Elasticity tensor

We formulate the fourth-order fictitious elasticity tensor C in the Lagrangian description by differentiating the
ctitious second Piola–Kirchhoff stress tensor S with respect to C/2, and, subsequently, multiply it with the factor

J−4/3, so that we obtain

C = 2J−4/3 ∂S
∂C

= 4J−4/3

(
ψ ′′

g ( Ī1)I ⊗ I +

m∑
n=1

ρcnCcn +

m∑
n=1

ρenCen

)
, (27)

ith

Ccn =

{
λ−4

cr f ′′
c (λ̄2

cn)Nn ⊗ Nn ⊗ Nn ⊗ Nn if λ2
cn ≥ 1,

0 if λ2
cn < 1,

(28)

Cen =

{
f ′′
e (λ̄2

en)Nn ⊗ Nn ⊗ Nn ⊗ Nn if Θn ≥ Θξ and λ2
en ≥ 1,

0 else,
(29)

here

ψ ′′

g ( Ī1) =
∂2Ψg( Ī1)
∂ Ī1∂ Ī1

, f ′′

c (λ̄2
cn) =

∂2 fc(λ̄2
cn)

∂λ̄2
cn∂λ̄

2
cn

, f ′′

e (λ̄2
en) =

∂2 fe(λ̄2
en)

∂λ̄2
en∂λ̄

2
en

. (30)

he fictitious elasticity tensor C in the Eulerian description is then obtained by applying the push-forward to (27),
which results in

C = 4J−1
m∑

n=1

ρcnCcn + 4J−1
m∑

n=1

ρenCen (31)

ith

Ccn =

{
λ−4

cr f ′′
c (λ̄2

cn)nn ⊗ nn ⊗ nn ⊗ nn if λ2
cn ≥ 1

0 if λ2
cn < 1,

(32)

Cen =

{
f ′′
e (λ̄2

en)nn ⊗ nn ⊗ nn ⊗ nn if Θn ≥ Θξ and λ2
en ≥ 1,

0 else.
(33)

Note that the term associated with the ground substance vanishes because the second derivative of the neo-Hookean
model leads to ψ ′′

g ( Ī1) = 0. Following on, the isochoric elasticity tensor Ciso is then obtained from (31), as defined
in Holzapfel [51],

Ciso = P : C : P +
2
3

tr(σ )P −
2
3

(σ iso ⊗ I + I ⊗ σ iso). (34)

. Representative numerical examples

We have implemented the proposed constitutive model at the Gauss-point level in the finite element analysis
rogram FEAP [47] with the aim of demonstrating its performance by some representative numerical examples, such
s uniaxial extension and simple shear of a unit cube. Subsequently, we implemented the model into the commercial
nite element analysis program Abaqus/Standard [48] through a user-defined material subroutine (UMAT). Thus, it
llowed us to apply the proposed constitutive model to an (acute) aortic dissection geometry motivated from patient
ata.
9
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3.1. Computational studies on a single elastic lamella

The geometry of the first example is a unit cube which is discretized by a single 8-node hexadedral mixed
Q1/P0 element, and subsequently solved by the Newton–Raphson method. The augmented Lagrangian method in
FEAP [47], as described in Simo and Taylor [59], was applied to ensure incompressibility. For these numerical
examples we reduced the isochoric part of the strain–energy function to the part associated with elastic fibers.
We verified the implementation by comparing the analytical or theoretical solution, which was computed in
MATLAB [60], with the numerical results obtained by FEAP [47]. The material parameters of the elastic fibers were
determined by fitting the constitutive model to experimental data obtained from the study of Matsumoto et al. [61].

3.1.1. Identification of constitutive parameters
The experimental study of Matsumoto et al. [61] describes the uniaxial extension test of a single elastic lamella

from a porcine aorta with a thickness of ∼ 10 µm. The elastic lamella was excised from the surrounding tissue and,
subsequently, the remaining tissue was removed by an enzymatic digestion with purified collagenase. Following
the sample preparation, a stretch of approximately λ = 3.24 was applied on the elastic lamella to obtain the
stress–stretch ratio curves. The cross-section of the samples was measured in the stress-free reference state.

We propose that the strain–energy function of a single elastic fiber fe( Ī4) takes on the form

fe( Ī4) =
c1

c2
( Ī c2/2

4 − 1) − c1 ln Ī 1/2
4 , (35)

where c1 and c2 represent material parameters. It was shown that fe( Ī4) fulfills the condition of a stress-free reference
state and satisfies the condition of polyconvexity [62]. The constitutive parameters were determined by minimizing
an objective function via nonlinear least-square analysis. The objective function is defined as the sum of the squared
differences between the analytically predicted Cauchy stress σi and the experimental measured values σ̃i over the
number of experimental data points N , i.e.,

min
{c1,c2}

N∑
i=1

(σi − σ̃i )2. (36)

e implemented the proposed strain–energy function of a single elastic fiber in Matlab [60] to obtain the analytical
olution of the Cauchy stress for the uniaxial extension and simple shear test. Then, the built-in function lsqnonlin
as used to solve the described minimization problem, and the material parameters c1 = 56.594 kPa and c2 = 3.89
ere identified.

.1.2. Uniaxial extension test
In the present example, we consider a uniaxial extension test of an incompressible unit cube with the geometry

× 1 × 1 mm composed of one single hexahedral element, as shown in Fig. 4. The faces of the unit cube are aligned
ith the unit Cartesian basis vectors E1,E2 and E3. On the top face of the unit cube, we apply a displacement
oundary condition and specify that the loading direction coincide with the radial vector ER = E3. Defined by
he radial vector, a rotational symmetric dispersion of one family of elastic fibers is assumed to demonstrate the
erformance of the proposed constitutive model. Due to symmetry, the deformation gradient for this problem is

[F] = diag[λ−1/2, λ−1/2, λ], (37)

here λ represents the stretch in the E3-direction. In analogy, for any fiber direction N within the half sphere, I4(N)
s given by

I4(N) = λ−1 sin2 Θ + λ2 cos2 Θ . (38)

ote that I4(N) is independent of Φ for this particular case. Then, the Cauchy stress tensor σ over the integration
omain Ω = {(Θ,Φ)|Θ ∈ [0, π/2],Φ ∈ [0, 2π ], I4 > 1} of a half sphere, when the fiber dispersion is treated
ontinuously, is

σ = −pI +
c1
∫
ρe(Θ,Φ)I −1

4 (I c2/2
4 − 1) sinΘn ⊗ ndΘdΦ, (39)
π Ω

10
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Fig. 4. Reference and intermediate configurations of a unit cube with a rotationally symmetric dispersion of elastic fibers for uniaxial
extension. Radial vector ER is aligned with the E3-direction in the reference configuration. On the (E1,E3)-plane the cross-section of the
3D fiber dispersion including an arbitrary fiber direction Nn is shown.

here p represents the Lagrange multiplier to ensure incompressibility. For this case, ρe(Θ,Φ) reduces to

ρe(Θ) = 4

√
be

2π
exp

(
−2be cos2 Θ

)
erf
(√

2be
) . (40)

ollowing Li et al. [55], the uniaxial Cauchy stress σ ≡ σ33 in the E3-direction is expressed by

σ = αλ2
− βλ−1, (41)

here α and β are defined over the domain Σ = {Θ ∈ [0, π/2] | I4 > 1} as

α = 2c1

∫
Σ

ρe(Θ)I −1
4 (I c2/2

4 − 1) sinΘ cos2 ΘdΘ, (42)

β = c1

∫
Σ

ρe(Θ)I −1
4 (I c2/2

4 − 1) sin3 ΘdΘ . (43)

The numerical integrations of the coefficients α and β were evaluated in Matlab [60] with the built-in function
uadgk using the adaptive Gauss–Kronrod quadrature method to verify the finite element solution of this problem by
sing the DFD model [63]. The material parameters c1 and c2 were determined in Section 3.1.1. To demonstrate the
erformance of the constitutive model, the concentration parameter of the elastic fibers be was chosen to represent
nearly uniform fiber distribution, be = 0.01. The numerical results for four different values of the degradation

parameter ξ are shown in Fig. 5.
The Cauchy stress response decreases with the increase of the degradation parameter which is in good agreement

with the structural observations described in Section 1. In addition, we investigated the influence of the number of
discrete fiber directions m on the solution which is not shown here. It is obvious that a low number of discrete fiber
directions is not able to represent the analytical result of the continuous model exactly. Therefore, the accuracy of
the DFD model depends strongly on the discretization of the unit sphere. However, as described by Li et al. [46],
the DFD model reduces the computational costs significantly when compared to the continuous approach, which
is an important advantage of the DFD model. For example, the authors of [46] achieved a speed-up of 224 for a
representative numerical example with 320 hexahedral elements by using the proposed DFD model. Other numerical
examples or a different computer performance might undoubtedly change the speed-up downward or upward. Here,
11
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Fig. 5. Results of the uniaxial extension test with four different values for the degradation parameter ξ to demonstrate the effect of weakening
n the radial direction. We chose the material parameters c1 = 56.59 kPa and c2 = 3.83 for the elastic fibers, and set the concentration
arameter to be = 0.01 to describe a nearly uniform fiber dispersion. The results were obtained with a bulk modulus of K = 8.0 · 105.

Fig. 6. Reference and intermediate configurations of a unit cube with a rotationally symmetric dispersion of elastic fibers at simple shear.
The radial vector ER is aligned with the E3-direction in the reference configuration. On the (E1,E3)-plane the cross-section of the 3D fiber
dispersion including an arbitrary fiber direction Nn is shown.

we have chosen m = 4000 for an accurate numerical solution which is reasonable for the computational cheap
problem under discussion.

3.1.3. Simple shear
In this example, we apply a simple shear deformation to an incompressible unit cube in the (E1,E3)-plane

ith the geometry of 1 × 1 × 1 mm, which is discretized by a single hexahedral element, as illustrated in Fig. 6.
imilarly to the previous section, the radial vector ER is assumed to be aligned with the E3-direction in the reference
onfiguration to depict a realistic material behavior based on the introduced structural investigation in Section 1.
oundary conditions are chosen such that all the nodes on the (E1,E2)-plane are constrained in all three translational
egrees of freedom, and on the top face of the unit cube a horizontal displacement in the E -direction is applied.
1

12
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Fig. 7. Results of the shear test with four different values for the degradation parameter ξ (0, 0.2, 0.4, 0.6) to demonstrate the effect of
weakening during shear deformation. We chose the material parameters c1 = 56.59 kPa and c2 = 3.83 for the elastic fibers, and set the
concentration parameter to be = 0.01 to describe a nearly uniform fiber dispersion. The results were obtained with a bulk modulus of
K = 8.0 · 105.

Thus, for this particular case, we can formulate the deformation gradient in the matrix form as

[F] =

⎡⎣1 0 c
0 1 0
0 0 1

⎤⎦ , (44)

where c represents the amount of shear, and I4(N) is given in the explicit by

I4(Θ,Φ) = 1 + c2 cos2 Θ + c sin 2Θ cosΦ. (45)

In analogy to Li et al. [55], the Cauchy shear stress component σ13 in the (E1,E2)-plane is given by

σ13 = αc + γ, (46)

here the factors α and γ are defined over the domain Ω = {(Θ,Φ) ∈ S, I4 > 1} as

α =
c1

π

∫
Ω

ρe(Θ,Φ)I −1
4 (I c2/2

4 − 1) sinΘ cos2 ΘdΘdΦ, (47)

γ =
c1

π

∫
Ω

ρe(Θ,Φ)I −1
4 (I c2/2

4 − 1) sin2 Θ cosΘ cosΦdΘdΦ. (48)

Again, we verified the numerical results of the finite element solution with the analytical model in Matlab [60]
sing the same material and structural parameters for the constitutive model. Fig. 7 shows the Cauchy shear stress
esponses for four different values of the degradation parameter ξ . As shown, a decrease in the Cauchy shear
tress response occurs when the degradation parameter increases which is in accordance with the results obtained
reviously, and the discussed structural observations of Section 1.

.2. Computational study on an aortic dissection geometry motivated from patient data

The geometry of an acute aortic dissection, motivated from patient data, was reconstructed in Abaqus/Standard
48] to study the influence of radially-directed elastic fiber degradation on the stress distribution in an aortic
issection. We implemented the proposed model as a UMAT with a fully incompressible hybrid element formulation
n Abaqus/Standard [48], and verified the model by comparing with previously obtained results of Section 3.1 and
he numerical results published in the computational study of Li et al. [46].
13
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Table 1
Constitutive parameters (µ, k1, k2, c1, c2) from the literature [61,67] and uniaxial extension tests from our
laboratory. Structural parameters of the collagen fibers (αc, bc) are obtained from second-harmonic generation
of human thoracic aortic tissues [65], while be is an assumed parameter.

Parameter µ k1 k2 αc bc c1 c2 be
[kPa] [kPa] [–] [◦] [–] [kPa] [–] [–]

Media 62.1 1.4 22.1
27.75

5.75 56.59 3.83 0.01
−27.19

Adventitia 21.6 1.4 22.1
55.21

4.89 - - -
−50.55

3.2.1. Identification of constitutive parameters
For the aortic dissection geometry we identified the material and structural parameters of the constitutive models

y using experimental data documented in the literature, and from uniaxial extension testing results from our
aboratory. The experimental results were obtained from a dissected human thoracic aortic sample of a 51-year-
ld male donor with high blood pressure including both medial and adventitial layers. The experimental protocol
f the uniaxial extension test follows the description of Weisbecker et al. [64]. In short, the layers were separated
rom the surrounding tissue, and, subsequently, cut into a dog-bone shape specimen by using a metal template. To
easure the displacement, two black markers were attached to the central region of the respective specimens. Then,

he two specimens were preconditioned and subjected to uniaxial extension tests up to failure. To ensure an in vivo
ondition, all tests were carried out in a physiological bath at 37 ◦C. The displacement of the markers and the
riven force data were recorded simultaneously. Following the results of the uniaxial extension test, we computed
nd, subsequently, plotted the Cauchy stress versus stretch curve.

The material parameters of the elastic fiber, i.e. c1 = 56.59 kPa and c2 = 3.83, were obtained from the results
described in Section 3.1.1. In consequence of missing reliable experimental data, we chose a concentration parameter
be = 0.01 which describes a nearly uniform fiber distribution of elastic fibers in the media. To investigate the
influence of radially-directed elastic fibers, we compared a defined pathological condition (ξ = 0.6), with the
healthy condition (ξ = 0). By applying the uniaxial extension testing results, we then fixed the material parameters
of elastic fibers and, on the basis of the initial slope of the Cauchy stress versus stretch curve in the linear range, we
approximated the shear modulus of the ground substance to be µ = 61.2 kPa in the medial layer. For the adventitial
layer, we neglected the presence of the elastic fibers. Hence, the shear modulus of the ground substance was used
to approximate the initial slope of the Cauchy stress versus the stretch curve. We estimated a shear modulus of
µ = 21.6 kPa. The obtained values are in accordance with previous studies [64].

Next, we utilized the results of Schriefl et al. [65] which investigate, inter alia, the structural parameters of
ollagen fiber in the human thoracic aorta. After image analyses, the authors identified the layer-specific 3D fiber
ispersion of two families of collagen fibers via second-harmonic generation. The mean fiber orientation of the
wo families of collagen fibers are specified by the angle αc, which is defined in the (E1,E2)-plane as the angle
etween the circumferential direction E1 and the respective mean fiber direction, see Fig. 8. The fitting procedure
f the image data with a von Mises distribution provided a concentration parameter of the media, bc = 5.75,
nd the adventitia, bc = 4.89, for both fiber families. Unfortunately, we were not able to obtain any experimental
ata for the structural parameters of dissected human tissues. For the DFD model, the PDF was discretized over
he unit hemisphere with m = 640 triangles, which reduces the computational costs, while still providing a good
ccuracy. We used the same discretization for collagen and elastic fibers. Next, we specified the single collagen
ber strain–energy function fc( Ī4) in the exponential form [66] as

fc( Ī4) =
k1

2k2
{exp[k2( Ī4 − 1)2] − 1}, (49)

ith the collagen fiber stiffness k1, a positive material parameter with the dimension of stress, and the collagen
ber shape parameter k2, a positive material parameter with no dimension. We identified the material parameters of
ollagen fibers according to the experimental data of Enea et al. [67]. Finally, the material and structural parameters
f the medial and adventitial layers are summarized in Table 1. Due to missing reliable data we set the recruitment

tretch of collagen fibers to λcr = 1.

14
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Fig. 8. Reconstructed geometry of an acute aortic dissection, motivated from patient data, with two layers (media and adventitia), and
the presence of an acute angle characterizing the dissection. Each layer was discretized in Abaqus/Standard [48] with 10-node quadratic
tetrahedral elements (C3D10H) individually, in total 78 389 elements were used for the finite element analysis.

3.2.2. Aortic dissection geometry and mesh
Fig. 8 illustrates the geometry of an acute aortic dissection, a geometrical setting motivated by patient data. A

ection of the descending thoracic aorta has a length of 35 mm, and the aortic wall is composed of two distinct layers,
.e. media and adventitia. The experimental study of Amabili et al. [68] provides data of layer-specific thickness

easurements which were used to define the dimensions of the aortic wall. The thickness of the media (0.91 mm)
nd the adventitia (0.49 mm) are based on the results of a 67-year-old donor. Here, we neglected the intima so that
ts thickness (0.21 mm) was added to the media. We further assumed that the false lumen initiates halfway of the

edia. The true and false lumina are characterized by either a circular or an elliptical shape which is based on the
bservation of various studies [69,70]. From the experimental results of Amabili et al. [68], the inner diameter of
he true lumen on the bottom of the geometry is set to 19.58 mm. The inner diameter of the true lumen and the
hickness of the aortic wall originate both from the measurement results of the same donor. Note that the shape of
he true lumen varies from the bottom to the top due to the development of the false lumen. Moreover, we assumed
he presence of an ‘acute angle’, which is a characteristic angle in acute aortic dissection between the dissection
ap and the outer wall of the false lumen [71,72]. In chronic aortic dissection, the acute angle is often not visible
ue to neointimal growth and local thrombosis.

Then, Abaqus/Standard [48] was used to discretize the geometry with 78 389 10-node quadratic tetrahedral
lements (C3D10H) applying a hybrid formulation to ensure incompressibility. The mesh quality was verified and
local coordinate system was constructed using Abaqus/Standard [48] by defining a discrete coordinate system

or each layer. We set the E1-direction as the circumferential direction (clockwise) and the E3-direction as the
adial direction pointing in the direction of the respective lumen, as shown in Fig. 8. Consequently, the E2-direction

epresents the longitudinal direction.

15



M. Rolf-Pissarczyk, K. Li, D. Fleischmann et al. Computer Methods in Applied Mechanics and Engineering 373 (2021) 113511

λ

3

a
b
i
i
I

i
d
t
t
o
a
t
w
w
l
w
s
s
d

n
n

4

e
d
A
D
s
t

i
a
e

3.2.3. Applied boundary conditions
A displacement boundary condition is applied at the bottom face of the model to impose an axial prestretch of
= 1.07, which is based on 55.5 to 66-year-old donors [73]. This is in accordance with the previously chosen

dimensions of the aortic wall, the inner diameter and the thickness of the aortic wall. In addition, we applied a
static internal pressure of 75 mmHg (and 117 mmHg) in the false lumen and 72 mmHg (and 120 mmHg) in the true
lumen to simulate the blood pressure in diastole (and systole) [74]. The static internal pressure models the presence
of blood in the aortic wall, which we assumed to be constant over the rather short length of the geometry (35 mm).
Moreover, we did not consider wall shear stresses, because the magnitude of wall shear stresses in the aorta, which
is usually < 10 Pa [74], is negligibly small in comparison to mechanical stresses in the aortic wall. A direct impact
of wall shear stresses on the mechanical stress distribution in the aortic wall can therefore be excluded. For the sake
of completeness, we neglected thrombus formation in the false lumen which may influence the blood pressure. To
eliminate the rigid body motion, the top face of the model geometry is restricted in the axial direction, and a single
point located at the top face is restricted in the E1-direction and another in the (E1,E2)-plane.

.2.4. Numerical results
We constructed the finite element model for the quasi-static boundary-value problem in Abaqus/Standard [48]

nd solved it by using the quasi-Newton method with a constant damping factor of 1 · 10−3, which was estimated
y trial and error. The simulations were performed with an automatic time incrementation. We chose an initial time
ncrement of τ = 1 · 10−3 which decreases to a minimum incremental size of τmin = 5 · 10−7, whenever numerical
nstabilities occurred. The numerical simulation was completed in about 90 min on a Windows computer with an
ntel Xeon W-2145, 8C/16T, 3.70 − 4.50 GHz processor and 64 GB of memory.

Fig. 9 illustrates the computational results for the healthy condition by showing the maximum principal stresses
n the false and true lumina at diastole and systole. Here the results of the pathological condition did not significantly
iffer from the healthy condition. In diastole, the applied pressure in the false lumen, 75 mmHg, is slightly higher
han that in the true lumen, 72 mmHg, which causes the dissection flap to bend towards the true lumen. Furthermore,
he maximum principal stress in the outer wall of the false lumen is significantly higher than that in the outer wall
f the true lumen which can be explained by the decreased wall thickness. Moreover, the peak stress is located
t the acute angle, at the lateral side to the false lumen. It appears that the stress concentrations are caused by
he dilatation of the two lumina, which, in consequence, pulls the dissection flap almost orthogonal from the outer
all. In comparison, the higher pressure in the systole leads to a more pronounced dilatation of the outer aortic
all, which therefore leads to even higher stresses. Subsequently, a progression of the false lumen may be more

ikely in the systole. Fig. 9 displays also evaluated computed tomography (CT) images at the end of the aortic arch
hich display the minimal and maximal extents of the false and true lumina over the cardiac cycle, taken from the

tudy of Ganten et al. [69]. The minimal and maximal extents of the true lumen correspond approximately with the
ystole and diastole, respectively. However, the shape and geometry of the two lumina in the CT image are slightly
ifferent from the created geometry due to differences in the pressure and the geometry.

The influence of the degraded elastic fibers on promoting the progression of the false lumen can neither be shown
or refuted by this example. Considering the chosen example, the degradation of radially-directed elastic fibers do
ot alter the stress state significantly in the domain around the acute angle.

. Discussion

In this study, we proposed a novel application of the DFD model for characterizing the symmetrically dispersed
lastic fibers in the aortic wall, as previously discussed [45]. The discrete approach allows us to simulate the
egradation of radially-directed inter-lamellar elastic fibers, which is related to the pathology of aortic dissections.
ccording to previous studies [46,52], we formulated the strain–energy function of elastic fibers by means of the
FD model and, subsequently, introduced a degradation parameter to exclude degraded elastic fibers from the

train–energy function. The obtained constitutive model of elastic fibers then depends only on the fibers under
ension and a single degradation parameter.

Next, we presented the decoupled form of the strain–energy function into volumetric and isochoric parts which
s based on the multiplicative decomposition of the deformation gradient. Furthermore, the isochoric part was
dditively decomposed into the constituents of the aortic wall, namely the ground substance, collagen fibers and

lastic fibers. The continuum mechanical framework also included the explicit expressions of the Cauchy stress

16



M. Rolf-Pissarczyk, K. Li, D. Fleischmann et al. Computer Methods in Applied Mechanics and Engineering 373 (2021) 113511
Fig. 9. Computational results of the finite element analysis illustrating the maximal principal stresses in the false and true lumina at (a)
diastole and (b) systole with ξ = 0.6 in comparison with evaluated CT images at the end of the aortic arch, which display the minimal and
maximal extents of the false and true lumina over the cardiac cycle.
Source: CT images were reprinted from Ganten et al. [69].

tensor and the elasticity tensor in the decoupled form. The constitutive model was then implemented in the finite
element analysis program FEAP to demonstrate the performance of the model with two numerical examples, uniaxial
tension and simple shear. The results were in good agreement with the analytical solution computed in Matlab, and
showed the expected weakening of the medial layer with respect to delamination and shear loads.

Subsequently, we implemented the constitutive model as a UMAT in Abaqus/Standard. The geometry of an
acute aortic dissection, motivated from patient data, was then created in Abaqus/Standard and (physiological)
boundary conditions were applied to compute the deformation and stress distribution of the dissected aortic wall
under two quasi-static pressure states in the cardiac cycle, systole and diastole. The computational results provided
meaningful insights in the stress distribution of the dissected aortic wall. The magnitude of the stress distribution
is approximately in line with other computational investigations [33], however, it is strongly depended on the
chosen material parameters which differ from patient to patient. As noted before, the effect of the degradation
of elastic fibers in the radial direction were invisible in the numerical example which can be explained on the basis
of different reasons. Firstly, the stiffness contribution of the elastic fibers may have only a limited influence on
the stress distribution at higher pressures because the majority of the load is borne by the collagen fibers. This is
also supported by the recently published results of Wang et al. [44]. However, the decrease in the radial stiffness
leads to a lowering of the failure stress of the tissues, which promotes the progression of a dissection. To include a
fracture criterion into the model and to further analyze this particular example is a next meaningful step. Secondly,
there may be too many collagen fibers specified between the lamellae due to the defined rotationally symmetric
fiber dispersion function. This dispersion function implies that many collagen fibers are oriented radially, which
may not be the case in reality. Therefore, we motivate future studies to better investigate structural and mechanical
properties of dissected human aortic tissue, so that computational results on aortic dissection geometries are more
meaningful. A review on experimental investigations on the aortic wall failure properties with the focus on dissection
was recently published by Sherifova and Holzapfel [75]. Thirdly, adaptive finite element methods should be used
with the purpose to create an optimal mesh with minimum degrees of freedom. Stress gradients could then be better
captured, i.e. regions with higher gradients of stress field produce then lower values of estimated error. Finally, the
aortic wall is primarily subjected to a stretch in the circumferential direction caused by the inflation of the vessel
due to blood pressure. As a consequence, the aortic wall becomes thinner which then compresses the lamellar units
of the media. The inter-lamellar elastic fibers are not able to bear loads under compression, so that they do not
contribute to the stiffness of the aortic wall under this conditions. Therefore, it is plausible that the macroscopic
effects of the degradation of elastic fibers are invisible in this particular boundary-value problem.
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The computational simulation of the aortic model was mainly performed under static loading conditions in the
alse and the true lumen. The pulsating blood pressure causes a pressure difference between the false and true
umina which is assumed to be between 2–4 mmHg [74,76]. This comparatively low pressure difference suggests
hat the interchange of blood between the true and false lumina is also fairly low. Hence, high velocities of the blood
ow are only expected in the region proximal to the intimal tear, and a dissection progression, induced by blood

etting into the acute angle, seems rather unlikely. This is somehow in contradiction to previous discussion in [33].
evertheless, the pressure differences may alter with the location and characteristic of the entry tear, and possible

eentry tears [74,77]. On the contrary, our computational results suggest that the medial layer is delaminated by the
tretch applied to the dissection flap. The dissection flap is stretched due to the cyclic dilatation of the false and
rue lumina, and, subsequently, pulled apart from the remaining medial layer. This may promote the progression
f the false lumen. In addition, hypertension and age-related dilatation of the aortic wall, known as risk factors for
ortic dissection, may increase the applied stretch on the dissection flap even more.

The dissection flap is exposed to a cyclic movement which is caused by the alternating pressure gradient between
he false and true lumina, as shown in Fig. 9. This movement decreases with the progression of the aortic dissection
ue to stiffening of the dissection flap, as suggested by some studies [69,70,78]. The stiffening of the dissection flap
s the result of remodeling, or more precisely fibrosis, which stiffens the dissection flap, and thus limits the movement
uring the cardiac cycle. The stiffening may alter the stress distribution in the dissection flap and, therefore, may
lso increase the stress concentration at the acute angle significantly. To the best of the authors’ knowledge the
omputational study of Bäumler et al. [76] incorporated the remodeling of the dissection flap at the very first.
uture studies incorporating the dynamic movement of the dissection flap, as well as the ongoing fibrosis, may
rovide more accurate results. Both processes may impact the progression of the false lumen.

The progression of the false lumen may also be influenced by the contraction of SMCs. SMCs align primarily
ith the circumferential direction, but they show a radial tilt in the medial layer [15]. In consequence, they can

ontribute to the radial strength of the medial layer [79,80]. As mentioned earlier, dysfunction and apoptosis of SMC
re strongly associated with aortic dissection. However, there are just a few computational studies incorporating
ysfunction and apoptosis of SMCs in association with aortic dissection [25,26]. Thus, there is still a need of
uantifying the impact of the active constrictions of SMCs on the delamination strength in the aortic wall both
rom the experimental and the computational point of view.

In summary, we presented a constitutive approach to model the elastic fibers in the medial layer by using the DFD
odel, and showed the importance of modeling degraded elastic fibers with respect to aortic dissection. Furthermore,
e specified possible mechanisms promoting the progression of the false lumen, since there may be multiple triggers,

nd, in this regard, we discussed possible directions of future computational studies associated with aortic dissection.
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