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Understanding the mechanical effects of smooth
muscle cell (SMC) contraction on the initiation and the
propagation of cardiovascular diseases such as aortic
dissection is critical. Framed by elastic lamellar sheets
in the lamellar unit, there are SMCs in the media with
a distinct radial tilt, which indicates their contribution
to the radial strength. However, the mechanical
effects of this type of anisotropy have not been fully
discussed. Therefore, in this study, we propose a
constitutive framework that models the passive and
active mechanics of the aorta, taking into account the
dispersed nature of the aortic constituents by applying
the discrete fibre dispersion method. We suggest
an isoparametric approach by evaluating various
numerical integration methods and introducing a
non-uniform discretization of the unit hemisphere
to increase its computational efficiency. Finally, the
constitutive parameters are fitted to layer-specific
experimental data and initial computational results
are briefly presented. The radial tilt of SMCs is also
analysed, which has a noticeable influence on the
mechanical behaviour of the aorta. In the absence of
sufficient experimental data, the results indicate that
the active contribution of SMCs has a remarkable
impact on the mechanics of the healthy aorta.

2021 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
The aorta is a complex living organ that plays a crucial role in the cardiovascular system. Its
functioning can only be understood as a physiological interplay between the passive and active
constituents of the aorta, which is disturbed in cardiovascular disease. In aortic aneurysms and
dissections, Shen & LeMaire [1], for example, showed that the connection between smooth muscle
cells (SMCs) and elastic fibres is disrupted, which could alter the role of SMCs as mechanosensors.

The aortic wall consists of three layers: intima, media and adventitia, in which several
constituents are interwoven with each other to form a complex matrix. The media consists of
about 53–78 stacked so-called lamellar units [2]. Each lamellar unit is framed by elastic lamellar
sheets on the top and bottom, which are connected to one another by elastic fibres. Collagen
fibres with relatively circumferential orientation and SMCs, which have either a contractile or
a synthetic function, are embedded in the ground substance between the lamellar sheets. The
active behaviour of the aortic wall is defined exclusively by contractile SMCs, more precisely
by the microscopic movement of myosin–actin filaments in the contractile units of SMCs (e.g.
[3]). The contractile units that define the direction of contraction are predominantly aligned
parallel to the longitudinal axis of the SMCs [4,5]. Normally, only the cell nuclei are visible in
structural examinations, which in turn are aligned with the longitudinal axis of the SMCs [6].
Several experimental studies have shown that the orientation of the SMCs has an alternating
radial tilt of approximately ±20◦ [2,7,8], i.e. the cells are not completely aligned with the axial–
circumferential plane. The resulting pattern is called the herringbone pattern [9], which is shown
in figure 1a. However, the influence of this pattern on the radial strength in the healthy and also
in the diseased aortic wall is not well understood. Interestingly, the value of the radial tilt is close
to the angle of the first principal direction in the radial–circumferential plane, which led to the
suggestion that SMCs extend in the direction of greatest strain [11]. The phenotype of SMCs is
essential for vascular homeostasis, so an imbalance between the contractile phenotype, which
changes the luminal diameter, and the synthetic or proliferative phenotype, which responds
to environmental biochemical stimuli, is known as a marker for cardiovascular disease. More
specifically, Humphrey [12] hypothesized that apoptosis and dysfunction of SMCs are associated
with aortic dissection, among other factors. To support this hypothesis, Halushka et al. [10]
compared normal aortic tissue of a young adult with pathological medial tissue, as shown in
figure 1b,c with different magnifications. In pathological medial tissue, they found that SMC
nuclei can be lost in a patchy and band-like fashion, as shown in figure 1d,e, respectively. The
SMC nuclei are shown in dark blue/burgundy colouring. These researchers referred to the band-
like loss of SMCs as ‘laminar medial collapse’, which corresponds to the historical nomenclature
of ‘laminar medial necrosis’ or ‘laminar necrosis’ (see, for example, the studies on dissected tissue
[13,14]). Other experimental evidence was published by Lee et al. [15] in an immunohistochemical
study on dissected medial tissues. It is thus obvious that apoptosis and dysfunction of SMCs make
an important contribution to the initiation and propagation of an aortic dissection but also to the
development of other cardiovascular diseases.

The aim of this study is threefold: first, we present a constitutive framework based on the
discrete fibre dispersion (DFD) method [16] that models the passive and active mechanics of
the aorta; second, we propose an isoparametric DFD method and implement a non-uniform
discretization of the unit hemisphere in order to increase computational efficiency; finally, the
structural and mechanical parameters of the aortic constituents are validated with experimental
data from our laboratory and from the literature using a maximum-likelihood estimation (MLE)
and a least-squares (LSQ) regression and the initial computational results of a healthy aorta
are shown. Whenever possible, we use experimental data from a dissected human aorta for
future applications to computational studies of aortic dissections. However, the lack of sufficient
experimental data prevents the aim from presenting a constitutive model of the passive and
active mechanics of the dissected human aorta. Instead, datasets from various human donors and
animals are used, some from healthy and some from dissected tissues. In particular, there is a lack
of experimental data on the active contribution of SMCs in healthy and diseased human aortas.
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Figure 1. (a) Schematic two-dimensional representation of the SMC arrangement (herringbone pattern) with E1, E2 and E3 for
the Cartesian unit basis vectors. Modified from Rhodin [9]. (b) Low and (c) highmagnification of normal aortic tissue of a young
adult showing all three aortic layers: intima (top), media and adventitia. SMC nuclei loss in (d) a patchy (asterisk) and (e) a
band-like fashion (arrows) in pathological medial tissue. The SMC nuclei are shown in dark blue/burgundy. Histological images
reprinted from Halushka et al. [10]. (Online version in colour.)

Therefore, experimental length–tension results of healthy animal tissue were scaled to human
tissue.

The layer-specific constitutive model of the aorta includes the passive contribution of collagen
fibres, elastic fibres and the ground substance, and, in addition, the active contribution of SMCs.
This model is intended to provide a constitutive framework for the development of future large-
scale computational studies to investigate healthy and diseased aortas. Against this background,
the mechanochemical processes that trigger the active contraction of SMCs are eliminated in
favour of a quasi-static and purely mechanical model that approximates the experimental data of
aortic tissue in a contracted equilibrium. We therefore present a novel strain-energy function for
modelling the active contribution of SMCs, which attempts to take into account the characteristic
length–tension behaviour of SMCs and their dispersed transmural arrangement. First, we include
the fraction of contractile SMCs and the maximum induced active SMC stiffness using two
scalar factors. Second, we apply the framework of the DFD method to account for the dispersed
arrangement of the contractile SMCs. Owing to the limited experimental data available, we model
the dispersion of SMCs instead of the dispersion of the contractile units [3]. Third, the state of
deformation of the SMCs prior to contraction is taken into account. Finally, the overlap behaviour
of the contractile units of SMCs is described by a distribution function to include the efficiency
with which it operates.

Section 2 proposes a layer-specific constitutive model that includes the passive and active
mechanics of the aorta using the original DFD method [16]. Then, in §3, different numerical
integration methods are compared and a non-uniform discretization of the unit hemisphere is
assessed by plotting the convergence rates for representative numerical examples. In addition,
an isoparametric DFD method is proposed and applied to a large-scale computational model
from an earlier study to examine computational time and numerical results for several
levels of discretization. The constitutive model for each constituent is then validated with
experimental data in §4. Histological parameters are determined by an MLE with statistical
data that define the arrangement of the respective constituents. The remaining mechanical
material constants are then fitted to the results of uniaxial extension tests from our laboratory
using LSQ regressions. Finally, the results are summarized in §5 and future prospects are
discussed.
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2. Layer-specific model framework
This section presents the continuum mechanical framework of a layer-specific constitutive model
of the aorta. In addition to the passive material behaviour, the framework incorporates a
mechanical model, which describes the active contribution of SMCs and also residual stresses.
As outlined by Holzapfel et al. [17], there are several ways to model the dispersion of fibrous
constituents, including the DFD method. In the following, the original DFD method, as it was
introduced by Li et al. [16], is applied by discretizing the unit hemisphere into a finite number of
elementary areas in order to model the dispersed alignment of collagen and elastic fibres, but also
the dispersed transmural arrangement of SMCs in the aortic wall.

(a) Original discrete fibre dispersion method
In order to apply the DFD method, we define a probability density function (PDF) ρ(Θ ,Φ), which
gives the probability of a fibrous constituent oriented along the unit vector

N(Θ ,Φ) = sinΘ cosΦE1 + sinΘ sinΦE2 + cosΘE3, (2.1)

where Ei, i = 1, 2, 3, define the Cartesian unit basis vectors. Thus, the unit vector N(Θ ,Φ) lies on
the unit hemisphere S = {(Θ ,Φ)|Θ ∈ [0,π ],Φ ∈ [0,π ]}. For reasons of symmetry, we only need to
consider half of the unit hemisphere. The DFD method requires the discretization of the unit
hemisphere into a finite number of elementary areas �Sn, n = 1, . . . , m, e.g. spherical triangles or
angular elements, as depicted in §3b.

Next, a representative fibre direction Nn is defined in the centre of each elementary area �Sn

with the representative fibre angle (Θn,Φn). The discrete fibre density ρn is then calculated by
numerical integration of the continuous fibre PDF over the corresponding elementary area, i.e.

ρn = 1
2π

∫
�Sn

ρ(Θ ,Φ) sinΘdΘdΦ, n = 1, . . . , m. (2.2)

Note that the computational efficiency and accuracy depend strongly on the discretization and
the numerical integration method used, which will be discussed later. A general strain-energy
function Ψ per unit reference volume is then formulated in the discrete setting as

Ψ =
m∑

n=1

ρnΨn(I4n), (2.3)

where I4n = C : Nn ⊗ Nn is the squared fibre stretch in the representative fibre direction Nn and
Ψn(I4n) is the single fibre strain energy. The right Cauchy–Green tensor C = FTF is defined by the
deformation gradient F, which describes the deformation of a body from the reference to some
current configuration [18]. The choice of (2.3) must ensure that the condition ψ(1) =ψ ′(1) = 0
holds. Naturally, the discrete fibre density must fulfil the normalization condition in the discrete
setting

m∑
n=1

ρn = 1, (2.4)

up to a numerical integration error.

(b) Passive constitutive model
The ground substance is described by the isotropic neo-Hookean model, specified by the strain
energy Ψg, which depends on the first invariant I1 = C : I, i.e.

Ψg(I1) = μg

2
(I1 − 3), (2.5)
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where μg represents the stiffness parameter and I is the second-order unit tensor. Based on the
anisotropic nature of collagen fibres, elastic fibres and SMCs, these are modelled using the DFD
method.

We assume that the total strain-energy function of the dispersed collagen fibres Ψc is given by

Ψc =
m∑

n=1

ρcnΨcn(I4n). (2.6)

In order to exclude compressed collagen fibres within a dispersion, we then introduce the tension–
compression switch

Ψcn(I4n) =
{

fc(I4n) if I4n ≥ 1,

0 if I4n < 1,
(2.7)

and apply the strain-energy function of a two-dimensional (2D) single collagen fibre proposed by
Holzapfel et al. [19], namely

fc(I4n) = k1

2k2
{exp[k2(I4n − 1)2] − 1}, (2.8)

where the collagen fibre stiffness and shape parameters are given by k1 > 0 and k2 > 0,
respectively. In general, the DFD method is capable of any type of fibre dispersion, symmetric
or non-symmetric, but Holzapfel et al. [20] have suggested a bivariate von Mises distribution.
This distribution involves the introduction of a multiplicative split of the continuous PDF into an
out-of-plane and an in-plane fibre dispersion as

ρc(Θ ,Φ) = ρc,op(Θ)ρc,ip(Φ) (2.9)

with

ρc,op(Θ) = 2

√
2bc

π

exp(−2bc cos2Θ)
erf (

√
2bc)

and ρc,ip(Φ) = exp(ac cos 2Φ)
I0(ac)

, (2.10)

where I0(x) and erf(x) denote the modified Bessel function of the first kind of order zero and the
error function of (x), respectively. The parameters ac > 0 and bc > 0 determine the concentration
of fibres around the mean fibre orientation, i.e. Θ = π/2 and Φ = 0 in the local coordinate system
of the fibre family. For the transformation into global coordinates (see figure 1), the collection
of representative fibre directions Nn associated with ρcn must be rotated by some out-of-plane
mean fibre angle Θ0,c and in-plane mean fibre angle Φ0,c. The discrete fibre densities of (2.9) are
then obtained by using (2.2). The choice of (2.10) naturally fulfils the normalization condition in
the discrete setting (see (2.4)), and of course the normalization condition is also satisfied in the
continuous setting, i.e.∫π

0
ρc,op(Θ) sinΘdΘ = 2 and

1
π

∫π
0
ρc,ip(Φ)dΦ = 1. (2.11)

Note that the integrals of the normalization conditions can be solved in closed form, as explicitly
shown in the electronic supplementary material, part B, in order to compute the out-of-plane and
in-plane PDFs, i.e. (2.10).

Based on Rolf-Pissarczyk et al. [21] we now define the constitutive model for elastic fibres,
specified by the strain energy Ψe, i.e.

Ψe =
m∑

n=1

ρenΨen(I4n), (2.12)

and exclude fibres under compression as

Ψen(I4n) =
{

fe(I4n) if I4n ≥ 1,

0 if I4n < 0.
(2.13)

In order to exclude degraded elastic fibres, (2.13) can easily be extended by introducing a
degradation parameter, as introduced in [21]. Next, we define the mathematical expression of
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the strain-energy function per 2D single fibre as

fe(I4n) = c1

c2
(Ic2/2

4n − 1) − c1 ln I1/2
4n , (2.14)

where c1 and c2 are the elastic fibre stiffness and the shape parameters, respectively, restricting
(2.14) to the tension domain with c1 > 0 and c2 ≥ 2 [22]. Note that (2.14) is motivated by recent
experiments on a single elastic lamella [23]. In analogy with (2.10), the dispersion of elastic fibres
is also described by a non-symmetric von Mises distribution.

The existence of a residual stress field S̃ adds another tensor-valued variable to the strain-
energy function of a tissue. According to Ogden [24], the influence of residual stresses on the
aorta is in the form

Ψres = 1
2

(̃S : C − S̃ : I) with σ res = 1
J

FS̃FT. (2.15)

If the generally inhomogeneous residual stresses are to be taken into account, i.e. S̃(x) �= 0, the
stress contribution σ res must be added to the total Cauchy stress of the aorta.

Finally, we define the passive behaviour of the medial and adventitial layers by providing the
strain-energy functions in each case according to

Ψmed = −p( J − 1) + Ψg +
2∑

i=1

Ψci + Ψe + Ψres (2.16)

and

Ψadv = −p( J − 1) + Ψg +
2∑

i=1

Ψci + Ψres, (2.17)

where p denotes the Lagrange multiplier that is to be enforced by the incompressibility constraint
J = det F ≡ 1. In addition, we assume the existence of two collagen fibre families i for each layer.

(c) Active contribution of SMCs
The active contraction of SMCs is triggered by a biochemical stimulus and involves molecular
kinetics, which can enable the description of the temporal evolution of contractile SMCs
[25]. Based on this, a series of papers was produced on this description [3,26–28], while the
thermodynamics of mechanochemical coupling was dealt with in [29,30]. At this point, we neglect
the mechanochemical processes that trigger the contraction of SMCs in favour of a quasi-static
and purely mechanical model that approximates the characteristic length–tension behaviour of
SMCs [31], because the time scale of interest is considerably longer than the activation duration of
contraction. To also include dynamic in vivo loading conditions, one could use the configurational
framework according to [28]. The deformation gradient is then described by a multiplicative
decomposition into an elastic elongation of the attached cross-bridges and a part related to
the relative sliding between the actin and myosin filaments. We consider this approach to be
exaggerated for the present study.

We model the SMCs as being dispersed in the aortic wall, which implicitly also reflects the
dispersion of the contractile units. This modelling approach is explained with experimental data:
(i) the contractile units of SMCs are distributed with respect to the cellular axis [32] and (ii) the
nuclei of SMCs are distributed around the mean orientation [33]. A common set-up for a length–
tension experiment is the uniaxial extension test with an applied stretch λ in the direction of
the expected mean orientation of the SMC arrangement, which is usually in the E1-direction.
First, the passive nominal stress Ppas is recorded in order to obtain the passive behaviour of
the aorta together with chemically suppressed contractile SMCs. Then with a fixed stretch λ,
the contraction of SMCs is triggered, which provides the overall response of the aorta Ptot. In
the literature, the active contribution of SMCs is calculated as Pact = Ptot − Ppas, although the
transverse deformation before and after the contraction is different. Length–tension experiments
as well as studies with a similar set-up were carried out on different mammalian species, e.g. with
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Figure 2. The passive, total and active stress responses from length–tension experiments with healthy (a) porcine tissue [35],
(b) bovine tissue [34] and (c) rabbit tissue [41]. Note that the legend in (a) also applies to (b,c).

healthy bovine [34], porcine [26,35,36], canine [37–40], rabbit [41] and rat tissue [42]. However,
the literature documents only a few experimental examples on human tissue [43,44] and none on
human vascular tissue.

As shown in figure 2 for porcine, rabbit and bovine tissues, the length–tension experiments
on different mammalian species show similarities. This finding by de Beaufort et al. [45] suggests
that results from other mammals can also be transferred to human tissue. Note that the nominal
stresses are non-dimensionalized by dividing with max Pact. The stress–stretch curves show a
general trend independent from the species. The passive material behaviour shows the expected
exponential stiffening of the tissue. By contrast, the active behaviour demonstrates stress even
without applied stretch, which illustrates its inelastic nature, and an asymmetrical drop on both
sides of the maximum at which the contractile units operate most efficiently [44,46]. In addition,
it can also be seen that the magnitude of the active behaviour depends on the deformation state
F0, which is the state that the SMCs are in during the initial activation.

Two approaches were proposed to implement the results of the length–tension experiments in
a quasi-static, continuum mechanical framework. Both approaches treat the active contribution
of SMCs as an additional stress on top of the passive behaviour and assume that the overlap
efficiency depends exclusively on the current deformation state F instead of F0. A first approach
approximates the overlap behaviour by a parabola [47–49]. By contrast, a second approach uses a
Gaussian function with two parameters to describe the overlap behaviour [36,50–52], which has
the advantage that the contraction decays to zero far away from the efficiency maximum of the
contractile unit instead of dropping below zero, which is non-physical. Interestingly, Haspinger
et al. [53] have shown that the standard Gaussian function is generally not suitable for describing
the asymmetry of the active behaviour.

Finally, within the setting of the original DFD method, we propose a new constitutive model
of contractile SMCs, say Ψsmc, as

Ψsmc =
m∑

n=1

ρsmcnΨsmcn(I4n), (2.18)

with the explicit mathematical expression of discrete SMCs

Ψsmcn(I4n) = φsmc
μsmc

2
O(I0n)(I4n − 1), (2.19)
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whereμsmc > 0 represents the maximum induced active SMC stiffness and 0 ≤ φsmc ≤ 1 represents
the fraction of contractile SMCs. As already mentioned, the efficiency of the contractile units
of SMCs depends on the initial deformation state C0 = FT

0 F0, which can either be prescribed
or taken from a previous simulation. The initial deformation state refers to the invariant I0n =
C0 : Nn ⊗ Nn. This invariant can be understood as the deformation state of a discrete SMC pre-
contraction. Based on experimental evidence, the efficiency of the contractile units of SMCs
resembles a Weibull distribution of the form

O(I0n) =
(

I0n

Iopt

)β−1
exp

{
−β − 1

β

[(
I0n

Iopt

)β
− 1

]}
, (2.20)

which has a maximum at Iopt > 0, with O(Iopt) = 1, and by choosing the shape parameter β > 0
the function drops asymmetrically to zero.

Since the media consists of several lamellar units with an inhomogeneous arrangement of
SMCs, the different radial tilt induces a transmural inhomogeneity in the media when the
contraction of SMCs is triggered. Therefore, the active contribution of SMCs for each lamellar
unit needs to be added to the passive behaviour of the media. Remodelling can be another factor
that leads to additional transmural inhomogeneity [54], whereby each of the parameters in (2.19)
and (2.20) may be a function of the reference position X. Given the lack of sensitive experimental
data, φsmc, μsmc, I0 and β are assumed to be constant across the media.

3. Isoparametric discrete fibre dispersion method
In the following, we propose an isoparametric DFD method based on an updated numerical
integration scheme and introduce a non-uniform discretization of the unit hemisphere to increase
computational efficiency.

(a) Numerical integration of the discrete fibre density
First, we compare the numerical integration method of the original DFD method with Gaussian
quadrature rules of different orders in order to assess the quality of the result. In the original DFD
method, the integral of (2.2) is calculated with high accuracy by dividing each elementary area
into about a thousand smaller areas and applying the vertex rule to each of them [55].

Even if not explicitly stated, the underlying mathematical assumption in (2.3) is that the strain-
energy function Ψn(I4n) is approximately constant in every elementary area, i.e. only the variation
of ρ(Θ ,Φ) within each �Sn is taken into account. While this might make sense under certain
conditions, the isoparametric approach would be to use the value of ρ(Θ ,Φ) at the centroid
instead of evaluating the integral of (2.2) to a very high precision. To distinguish between the two
approaches, we use the notation ρn from (2.3) for the discrete (integrated) fibre density used by the
DFD method and �n for the discrete fibre density at the centroid, i.e. �n = ρ(Nn). The isoparametric
approach would then correspond to the well-known centroid integration rule [56], which for our
case reads

Ψ = 1
2π

m∑
n=1

|�Sn|�nΨn(I4n), (3.1)

where |�Sn| denotes the surface area of �Sn. This approach has the same order of convergence
as the previous one, i.e. the integration error tends to zero in both cases at the same asymptotic
rate as m → ∞. The reason for this is that, regardless of how high the integration order for the
computation of �n is, the low-order error that is introduced by fixing Ψn(I4n) at the centroid
dominates. It is known that the centroid rule often performs even better than some higher order
integration rules [56], especially in the presence of discontinuities that occur when excluding
fibres under compression. In addition, the centroid scheme is extremely simple to implement
as it does not require isoparametric transformations for quadrature rules. Fortunately, there are
analytical expressions to find both the centroid position and the area of spherical elements. In
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spherical triangles angular elements

r(Q, F)

(b)(a)

Figure 3. (a) Uniform discretization of a unit hemisphere segment using spherical triangles and angular elements;
(b) illustrative non-uniform discretization of a unit hemisphere withm= 1024 spherical triangles, applied to a non-symmetric
PDF of collagen fibres, represented by a bivariate von Mises distribution with the mean fibre direction (red arrow) and the
concentration parameters ba = 1 and ac = 13, which are introduced in (2.9). (Online version in colour.)

other words, if the unit hemisphere is discretized, all the ingredients necessary to carry out the
integration are readily available.

(b) Non-uniform discretization of the unit hemisphere
Li et al. [16] suggested that a local refinement of areas on the unit hemisphere to account for
locally concentrated fibre dispersion could be beneficial. This could be of particular interest for
modelling non-symmetric fibre dispersions. Based on this idea, we present now a method in the
following to locally refine areas on the unit hemisphere.

As shown in figure 3a, we consider two types of elementary areas: spherical triangles, which
are treated in Cartesian coordinates, and angular elements, which are formed by the tensor
product of the angular coordinates Θ and Φ. Each of these has advantages and disadvantages.
When meshing, the angular elements are a bit simpler, since a mesh can be formed by simply
crossing aΘ-grid with aΦ-grid. Triangular elements can, however, be refined indefinitely without
loss of shape [57], while successive uniform refinements of angular elements lead to a progressive
slimming of the elementary areas close to the pole, as shown in figure 3a.

Let v1, v2 and v3 be the position vectors for the vertices of a spherical triangle�S. The position
of the centroid is simply

N = v1 + v2 + v3

|v1 + v2 + v3|
, (3.2)

and the surface area is given by l’Huilier’s theorem [58]

|�S| = 4 arctan

[√
tan

(
t
2

)
tan

(
t − u

2

)
tan

(
t − v

2

)
tan

(
t − w

2

)]
, (3.3)

in which u = arccos(v3 · v2), v = arccos(v3 · v1), w = arccos(v1 · v2) and 2t = u + v + w.
By contrast, the area of an angular element �S = (Θ1,Θ2) × (Φ1,Φ2) is given explicitly by

|�S| = |(Θ2 −Θ1)(cosΦ1 − cosΦ2)|, (3.4)

and its centroid coordinates (Θ∗,Φ∗) are such that 2Θ∗ =Θ1 +Θ2 and 2 cosΦ∗ = cosΦ1 + cosΦ2.
The application of the centroid rule is therefore straightforward for both types of elementary area.
On the other hand, if a different integration rule is used, it is generally necessary to first map

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 N

ov
em

be
r 

20
21

 



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210592

..........................................................

between the curved and a flat reference elementary area and then to apply standard Gaussian
integration rules defined on such a reference elementary area. For further details, the reader
is referred to the literature [56,59]. It is noteworthy that the mapping of angular elements is
somewhat easier to handle, since higher order integration rules can be constructed by simply
combining one-dimensional quadrature formulae in both directions.

Since the fibre density varies considerably with respect to the direction, uniformly discretizing
the unit hemisphere may not be a very efficient approach. A truly adaptive refinement requires
knowing the integrand beforehand, which is unfortunately not the case here. In this case, the
integrand of (3.1) depends on the deformation gradient, which of course is not known a priori.
The only information we have a priori is the PDF of the fibres ρ(Θ ,Φ). We therefore propose an
alternative local refinement criterion based on a coarse, uniform mesh. A certain elementary area
�Sn is refined if the condition �n >�max holds, where �max represents a predefined maximum
value. This refinement is applied consecutively until the criterion is met for all elementary areas,
which guarantees that more refinement is carried out in regions with a higher fibre concentration.
An illustrative non-uniform discretization of the unit hemisphere with spherical triangles is
shown in figure 3b.

(c) Evaluation of convergence rates
Then we implemented various numerical integration methods and the non-uniform discretization
of the unit hemisphere for spherical triangles and angular elements in Matlab [60]. We decided
to compare the Gaussian quadrature rule of order 1 (GQR1) and 4 (GQR4) with the numerical
integration method used by the original DFD method. The numerical integration method of the
DFD method can of course only be used for spherical triangles. To assess the quality of the results,
we first systematically solved two representative numerical examples, uniaxial extension and
simple shear of a unit cube, with the finite-element analysis program FEAP [61]. The numerical
results of this finite-element analysis are validated with the analytical solution from Matlab
[60] and Mathematica [62]. For a detailed description of the two representative examples, the
reader is referred to Li et al. [16]. Second, we applied the large-scale computational model of
a patient data-motivated geometry of an aortic dissection introduced by Rolf-Pissarczyk et al.
[21], which has been implemented in the commercially available finite-element analysis program
Abaqus/Standard [63], in order to compare the computational time and the computational results
obtained with several discretization levels. Here we limited the evaluations to representative
results.

Figure 4a,b compares the convergence rates obtained from a uniaxial extension test. Note
that the discrete nature of the DFD method does not allow a continuous evaluation. We have
connected the evaluation points with solid lines for illustration.

The use of a non-uniform discretization only allows additional evaluation points. The results
of the uniform and non-uniform discretizations show that the various numerical integration
methods provide comparable convergence rates for spherical triangles and angular elements.
Interestingly, the results of the numerical integration method used in the original DFD method
and the GQR4 are almost identical. When comparing the performance of the two elementary
area types, the discretization with spherical triangles provides higher convergence rates for
all numerical integration methods. In addition, the non-uniform discretization shows a better
convergence rate with a smaller number of elementary areas. For example, the accuracy of the
non-uniform discretization falls below a specified relative error of 10−2 with significantly fewer
elementary areas than the uniform discretization for GQR1. However, with a higher number
of elementary areas, the results always seem to converge, which implies that we only benefit
from a non-uniform refinement when using a small number of elementary areas. In addition,
the non-uniform discretization of angular elements shows no improvement over the uniform
discretization. It is noteworthy that the results were independent of the finite-element mesh.

The simple shear test gave similar results, as shown in figure 5, but with some striking
differences. First, the convergence rate achieved with the GQR1 for both types of elementary
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Figure 4. Convergence rates obtained from a uniaxial extension test with symmetric fibre distribution and a concentration
parameter b= 2.0 [16]. The graph shows the comparison of (i) the numerical integration method used by the DFD method,
GQR1 and GQR4, (ii) the (a) uniform and (b) non-uniform discretization of the unit hemisphere and (iii) the discretization of the
unit hemisphere with spherical triangles and angular elements.
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Figure 5. Convergence rates obtained froma simple shear testwith symmetric fibre distribution and a concentration parameter
b= 2.0 [16]. The graph shows the comparison of (i) the numerical integrationmethodusedby theDFDmethod, GQR1 andGQR4,
(ii) the (a) uniform and (b) non-uniform discretization of the unit hemisphere and (iii) the discretization of the unit hemisphere
with spherical triangles and angular elements.

area is significantly higher than the other numerical integration methods that evaluate the
PDF in each elementary area with several integration points. Second, the convergence rates
of the uniform discretization are comparable to or even better than those of the non-uniform
discretization. Therefore, the non-uniform discretization shows no advantages for this particular
boundary-value problem.

After analysing the discretization with representative examples, the isoparametric DFD
method is applied to the computational model of a patient data-motivated geometry of an aortic
dissection introduced by Rolf-Pissarczyk et al. [21], as shown in figure 6a. For details about
the created geometry, the applied boundary conditions at systole, the chosen spatial and time
discretizations of the geometry and the numerical solver used, including the specifications of
the computer, the reader is referred to [21]. Since the exclusion of collagen and elastic fibres

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 N

ov
em

be
r 

20
21

 



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210592

..........................................................

450.0
375.0
300.0
225.0
150.0
75.0
0m

ax
{s

i}
 i 

=
 1

,2
,3

m = 16 m = 4096

1600

1500

1400

1300

1.0

0.8

0.6

0.4

0.2

0
10 103 104102

no. elementary areas m (–)

re
la

tiv
e 

co
m

pu
ta

tio
na

l t
im

e 
(%

)

m = 16

m = 4096

non-uniform

pe
ak

 v
al

ue
 o

f 
m

ax
{s

i}
 i 

=
 1

,2
,3

 (
M

Pa
)

(c) (d)(a)

(b)

Figure6. Applicationof the computationalmodel introducedbyRolf-Pissarczyk et al. [21] of apatient data-motivatedgeometry
of an aortic dissection to compare the influence of the number of elementary areas (spherical triangles) (i) on the computational
time and (ii) on the computational results: (a) maximum principal stress max{σi}i=1,2,3 obtained with 4096 elementary areas
and a uniform discretization; (b) comparison of the peak value ofmax{σi}i=1,2,3 (solid line) and the relative computational time
(dashed line) when using several discretization levels; (c,d) max{σi}i=1,2,3 for m= 16 and m= 4096, respectively. (Online
version in colour.)

influences the comparison of the computational time, but also the numerical convergence of this
particular boundary-value problem, we have neglected the exclusion of fibres owing to both fibre
compression and degradation. With respect to numerical convergence, we identified that a low
number of elementary areas leads to problems when excluding a significant number of areas.
This finding is plausible, since, for example, if we exclude a single elementary area of the unit
hemisphere, the relative impact on the constitutive model is higher when discretizing with 16
areas than when discretizing with 4096 areas. In this particular boundary-value problem, we
observed these problems for approximately 100 elementary areas and fewer areas.

Figure 6a illustrates the computational results, represented by the maximum principal
stress max{σi}i=1,2,3, obtained with 4096 elementary areas and a uniform discretization of the
unit hemisphere. Then, in figure 6b, the relative computational time and the peak value of
max{σi}i=1,2,3 for several discretization levels with a uniform discretization are shown. By
comparing the results obtained with 64 elementary areas for both uniform and non-uniform
discretization, the advantage of a non-uniform discretization becomes apparent. In order to
examine the influence of the number of elementary areas on the computational time but also
on the computational results, figure 6c,d illustrates the max{σi}i=1,2,3 for 16 and 4096, respectively.

4. Model fitting
The determination of the constitutive parameters is described in detail in the following section.
First, the structural parameters of the anisotropic constituents are derived from the histology.
The remaining mechanical parameters are then fitted to experimental results and finally all the
constitutive parameters obtained are summarized in tables.
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Because of the scarcity of studies on human aortic tissue, it is not possible to use the results of
a single experimental study to capture all material constants. For this reason, various constitutive
parameters are fitted to different sets of experimental data that do not necessarily originate from
the aorta, let alone from human tissue. Nevertheless, great attention is paid to the selection of the
sources and their preparation, so that the applicability can be ensured. Note that we are neglecting
transmural material inhomogeneities in the media and adventitia.

(a) Regression of structural parameters
The anisotropy of each aortic constituent, i.e. collagen fibres, elastic fibres and SMCs, is defined
by a set of structural parameters. These parameters are now identified histologically using MLE.

(i) Collagen fibres

Histological data are usually provided in the form of histograms for an out-of-plane angle Θc,op

and an in-plane angle Φc,ip. The histological study of Schriefl et al. [64] suggests the existence of
two separate fibre families in the (E1, E2)-plane with their respective in-plane mean fibre angles
for healthy human thoracic aortic tissue. We also leave open the possibility of two different out-
of-plane fibre families with the mean fibre angles. In order to reduce the model complexity, we
assume that the concentration parameters ac and bc are the same for the respective fibre families
in every layer and that the respective mean fibre directions are symmetric, i.e. ±Θ0,c and ±Φ0,c.

The MLE is now used to determine, exemplarily, the set of structural parameters of the out-
of-plane PDF {bc,Θ0,c}, from the experimental data Θcr. Therefore, we define the out-of-plane
PDF for two fibre families with regard to the normalization condition, shown in (2.11), as a
superposition of two shifted von Mises distributions, i.e.

ρc,op(Θ) =
√

2bc

π

exp[−2bc cos2(Θ −Θ0,c)] + exp[−2bc cos2(Θ +Θ0,c)]
exp(−bc)g(bc,Θ0,c)

, (4.1)

where the explicit expression for g(bc,Θ0,c) is given in the electronic supplementary material,
part A. The MLE aims to optimize an objective function Lc,op of some kind similar to other fitting
algorithms, which is defined by the theoretical model at s experimentally measured data points.
For the out-of-plane case, the objective function Lc,op is in the form

Lc,op(bc,Θ0,c) =
s∏

r=1

ρc,op(Θcr), (4.2)

i.e. the product of all s probability density values at each data point Θcr. For this reason, the
objective function Lc,op is called the likelihood function in the context of MLE. If the assumed PDF
actually represents the experimental observations, its set of parameters {bc,Θ0,c} must maximize
the likelihood function, i.e.

{b∗
c ,Θ∗

0 } = arg max
bc∈[0,∞),Θ0,c∈[0,(π/2)]

Lc,op(bc,Θ0,c). (4.3)

For computational reasons it is often convenient to use the logarithm of the likelihood function,
i.e. the log-likelihood function lc,op = lnLc,op, which by definition is maximized by the same set
of parameters as Lc,op, since the logarithm is a strictly increasing function. At this maximum,
the gradient of the log-likelihood function lop must vanish, if the global maximum is not at the
boundary of the parameter space. Therefore, we write

∂lc,op

∂bc

∣∣∣∣
b∗

c ,Θ∗
0,c

= 0 and
∂lc,op

∂Θ0,c

∣∣∣∣
b∗

c ,Θ∗
0,c

= 0, (4.4)

which represents a nonlinear system of equations. The analytical expression of the derivatives in
(4.4) is contained in the electronic supplementary material, part A. Since the solution of the above
nonlinear system of equations cannot be expressed in closed form, numerical methods are used to
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Table 1. Summary of the regression results of the structural andmechanical parameters for both themedia and the adventitia,
which are based on experimental results from the literature; [23]—healthy porcine thoracic aorta; [64]—healthy human
thoracic aorta; [33]—healthy human aorta.

value R2 (%)

constituent parameter media adventitia reference media adventitia

ground substance μg 6.18 kPa 6.18 kPa [–]a 99.95 99.62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

collagen fibres k1 10.75 kPa 27.86 kPa [–]a 99.95 99.62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k2 1.38 1.38 [23] 97.08 97.08
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ac 3.62 3.08 [64]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bc 34.30 33.20 [64]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φ0,c ±25.14◦ ±50.72◦ [64]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Θ0,c 90.0◦ 90.0◦ [64]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

elastic fibres c1 62.97 kPa [–]a 99.95
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c2 2.98 [23] 99.74
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

be 34.30 [–]b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Θ0,e 90.0◦ [–]b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SMCs asmc 4.07 [33]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φ0,smc 0.0◦ [33]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bsmc +∞ [–]b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aLaboratory of the Institute of Biomechanics—dissected human ascending thoracic aorta.
bAssumption.

calculate b∗
c and Θ∗

0,c, e.g. the built-in function fsolve from the Python library SciPy. The necessary
starting values for the algorithm are selected by visualizing the log-likelihood function lc,op in a
contour plot and identifying the approximate location of the global maximum.

Analogously to this, the set of structural parameters {ac,Φ0,c} of the assumed in-plane PDF in
(2.10) is determined from the experimental data Φcr through the maximization problem. For the
in-plane data, it is assumed that at most two fibre families are visible in the in-plane histogram,
so that the in-plane PDF takes the form

ρc,ip(Φ) = exp{ac cos[2(Φ −Φ0,c)]} + exp{ac cos[2(Φ +Φ0,c)]}
2I0(ac)

. (4.5)

The results of the regression are shown in table 1. The logarithm of the likelihood function
of the in-plane PDF, i.e. the log-likelihood function lc,ip, and the analytical expressions of its
derivatives are contained in the electronic supplementary material, part A. Four structural
parameters {ac, bc,Φ0,c,Θ0,c} were determined for each layer. In addition, a comparison between
the histological data and the regression results for the media and adventitia are given in the
electronic supplementary material, part C. Here, the maximum number of two out-of-plane and
in-plane fibre families is sufficient to approximate the histological data.

(ii) Elastic fibres and SMCs

Experimental studies on the arrangement of human elastic fibres that could be used to perform
an MLE similar to the collagen fibres are rare. In fact, we were unable to trace any suitable
experimental data. Therefore, the PDF of elastic fibres and their statistical parameters are chosen
so that they approximate the qualitative observations. Since elastic fibres are usually arranged in
a sheet-like structure, the so-called elastic lamellae, it is assumed that they are mainly oriented in
the (E1, E2)-plane with a certain distribution in the radial direction. Interestingly, it turned out that
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Table 2. Summary of the regression results of the mechanical parameters of contractile SMCs for different radial tilts, which
are based on scaled experimental results from the literature [26]; [26]—healthy porcine common carotid artery.

radial tilt (◦) μsmc (kPa) Iopt (−) β (−) R2 (%)

0 149.31 1.39 2.84 77.30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 152.27 1.38 2.90 77.29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 162.43 1.34 3.09 77.27
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 184.09 1.29 3.40 77.23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40 226.58 1.22 3.83 77.17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50 316.35 1.13 4.32 77.13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

elastic fibres show a slight difference between the E1-direction and the E2-direction [65]. Based on
this and analogous to (2.10), the concentration parameter of the elastic fibres be is equal to the out-
of-plane concentration parameter of the collagen fibres bc. The in-plane concentration parameter
ae is set to zero. The structural parameters of elastic fibres are listed in table 1.

Only one experimental study was found to investigate the distribution of SMCs in healthy
human thoracic aortic tissue [33], albeit exclusively in-plane. In addition, similar studies used
porcine tissue [52,66]. Because of the frequently reported helical arrangement of SMCs, it is
assumed that the in-plane PDF has the same form as collagen fibres, but with a different
set of structural parameters {asmc,Φ0,smc}. It is remarkable that the global maximum for the
MLE is determined at the in-plane angle Φ0,smc = 0◦, i.e. the two assumed families of SMCs
are indistinguishable. This is in contrast to the original paper, which identified the angle
Φ0,smc = 8.4◦ [33].

Experimental data for the out-of-plane distribution are even more sparse. Although the
herringbone pattern of SMCs is reported qualitatively in several publications, a statistical analysis
of the radial tilt, which resolves each lamellar unit separately, was only carried out for murine
tissue [7,8] to the knowledge of the authors. Theoretically, each lamellar unit can have an
individual radial tilt, so that the number of possible configurations increases rapidly. For the sake
of simplicity, it is assumed that the magnitude of the radial tilt remains constant over all elastic
lamellar units and, in addition, a set of six different tilts {0◦, 10◦, 20◦, 30◦, 40◦, 50◦} is chosen a priori
to investigate the mechanical impact. Owing to the lack of reliable experimental data, the out-of-
plane concentration parameter is assumed to be bsmc → ∞. The results of the regression of the six
different sets of mechanical parameters {μ∗

smc, I∗opt,β
∗} for the six radial tilts are listed in table 2.

(b) Regression of mechanical parameters
Next, the set of mechanical parameters of the passive constitutive model {μg, k1, k2, c1, c2} and the
active contribution of SMCs {μsmc, Iopt,β} are fitted to experimental data using an LSQ regression.

(i) Passive material response

The constitutive models of collagen and elastic fibres represent the material behaviour of
a statistically representative fibre. In this context, it makes sense to determine their shape
parameters k2 and c2 from the experimental data of a single collagen or elastic fibre. Here, we
have chosen an elastic lamella instead of an elastic fibre, as we did not have any experimental
data on the latter. In the experimental study by Matsumoto et al. [23], uniaxial extension tests
were performed on a single adventitial collagen fibre and a medial elastic lamella, but both from
a healthy porcine thoracic aorta. To obtain the set of mechanical parameters for collagen fibres
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{k1, k2}, an error norm S was defined as

S(k1, k2) =
s∑

r=1

[F (λr, k1, k2) − σr]2, (4.6)

where F represents the constitutive model of the collagen fibres (see (2.6)), in connection with
the boundary-value problem posed by a uniaxial extension test, which is the s stress–stretch
pairs {σr, λr}. Then, the predicted stress response for a given stretch depends on the parameter
set {k1, k2}, i.e. σ =F (λr, k1, k2). The aim is now to determine the specific parameter set {k∗

1, k∗
2}, i.e.

{k∗
1, k∗

2} = arg min
k1∈[0,∞),k2∈[0,∞)

S(k1, k2). (4.7)

This nonlinear optimization problem is then handled numerically by the least-squares built-in
function from the Python library SciPy. However, it does not follow from this that the function
F (λr, k∗

1, k∗
2) is actually a good approximation of the experimental data just because a global

minimum is found. Therefore, a statistical measure is used to quantify the goodness of the fit.
Here the usual coefficient of determination R2 is chosen, i.e.

R2 = 1 − S(k∗
1, k∗

2)
sVar(σr)

, (4.8)

where Var(σr) denotes the variance in the data σr.
The set of mechanical parameters for the elastic lamellae {c∗

1, c∗
2} is determined in the same

way. In addition, we assume that the shape parameter of the collagen fibres in the adventitia is
also applicable to the media. For the fitting procedure of the adventitia and the media, the stiffness
parameters {k∗

1, c∗
1} are discarded, since the information about the stiffness of a single fibre cannot

be easily transferred to the entire layer.
Next, the remaining set of mechanical parameters for the adventitia {μg, k1} is determined.

To do this, we used experimental data from our laboratory obtained from a dissected human
ascending thoracic aorta. The experimental protocol of the uniaxial extension test follows the
description of Weisbecker et al. [67]. The results of the uniaxial tests on the adventitia provided
data points for the axial stretch and Cauchy stress component. We assume that the deformation
is homogeneous and that the radial and circumferential surfaces of the specimen remain traction-
free, so that the results of the LSQ regression provided the set of mechanical parameters for the
adventitia {μ∗

g, k∗
1}.

Then the set of mechanical parameters of the medial layer {k1, c1} must be determined.
Note that we have assumed that the stiffness of the ground substance μ∗

g is the same in both
layers. Otherwise the LSQ regression would lead to the undesirable limit case c∗

1 = 0 kPa. Our
laboratory also provided unpublished experimental data points for the media of a dissected
human ascending thoracic aorta {λ1r, σ11r}. Therefore, we apply the LSQ regression with the same
assumptions as for the adventitia to determine the remaining set of mechanical parameters of the
media {k∗

1, c∗
1}.

A comparison between the experimental data and the prediction of the constitutive model
is shown in figure 7. We did not use the entire range of data points for the LSQ regression,
for both layers λ1,max = 1.45 and λ2,max = 1.30, because the exponential increase in stiffness for
larger stretches in the non-physiological stretch regime would have led to non-physical material
behaviour. In addition, there is a trade-off between the regression quality of each parameter and
the sensibility of the simulation results. More precisely, an exact fit to these experimental data of
the adventitia could also be possible for the non-physiological regime, but the adventitia would
show an unphysically stiff behaviour in the simulations. Determining the mechanical parameters
is a compromise and it is expected that the constitutive models for the various constituents
will reflect the experimental data qualitatively rather than quantitatively. The results of the LSQ
regression algorithm for both aortic layers are listed in table 1.
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Figure 7. LSQ regression results of the mechanical behaviour of (a) the media and (b) the adventitia from a dissected human
ascending thoracic aorta based on experimental results from our laboratory. Note that the legend in (a) also applies to (b).

(ii) Active material response

As mentioned above, there is no suitable experimental study on the active behaviour of SMCs in
the human aorta in the literature. Therefore, we followed the approach of Haspinger et al. [53],
who scaled a set of experimental data from a length–tension experiment with a medial tissue of
healthy porcine common carotid arteries from Murtada et al. [26]. The set of experimental data
from Murtada et al. [26] provides the nominal stress of the passive behaviour P̆pas

11r and the overall
behaviour P̆tot

11r for each circumferential stretch λ̆1r. It is assumed that the results can be scaled to
human tissue with a stretch offset Λλ and a stress offset ΛP.

We followed this approach in a slightly modified way, applying the conversion of a set of
porcine data {λ̆1r, P̆11r} to a set of scaled human data {λ1r, P11r}, i.e.

λ1 = (λ̆1)Λλ and Ppas
11 =ΛPP̆pas

11 . (4.9)

The offsets are chosen so that the passive constitutive model for the media with its previously
determined parameter set {μ∗

g, k∗
1, k∗

2, c∗
1, c∗

2} predicts the scaled data Ppas
11r . By applying the LSQ

regression and the experimental data for λ̆1r and P̆pas
11r , the scale parameters are determined to

Λλ = 0.51 and ΛP = 2.31.
It is assumed that all SMCs are activated during the length–tension experiment, i.e. φsmc = 1.

The mechanical parameters of the constitutive model of contractile SMCs are fitted to the total
nominal stress component Ptot

11 , which does not depend on the sign of the radial tilt due to the
symmetry of the strip and its assumed constitutive behaviour. That is, the two medial strips in
figure 8 produce the same Cauchy stress response. The axial stretch λ2 and the amount of shear
γ follow from the state of traction-free radial and axial surfaces. Since the absolute values of
the radially tilted SMCs remain constant over the entire media, it is irrelevant whether the total
stress response is fitted to the contraction of a single or several alternating lamellar units. Finally,
we can apply the LSQ regression for the given set of experimental data {λ1r, Ptot

11r} from length–
tension experiments. The relatively low values of R2 ∼ 77% are caused by the large uncertainty of
the experimental data. Note that the initial deformation state F0 of the SMCs in the medial strip,
which is required for the constitutive model, is easy to grasp, as it corresponds to the uniaxial
extension test set-up for the passive media.

Figure 9 shows the comparison between experiment and theory for a radial tilt of 20◦ [2,7,8],
as well as the contraction efficiency μsmcO(I0,smc) for different radial tilts. As expected, the
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Figure 8. A 2D view of a medial strip consisting of two lamellar units (a,c) before and (b,d) after contraction of the SMCs with
(a,b) constant and (c,d) an alternating radial tilt of 30◦.
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Figure 9. Results of (a) the LSQ regression of the length–tension experiments by assuming a radial tilt of 20◦ and (b) the
corresponding contraction efficiency of SMCs for different radial tilts, which are based on scaled experimental results from the
literature [26]. Note that an increment of 10◦ was used.

maximum overlap function O(Iopt = 1) moves to lower initial SMC stretches for large radial tilts.
At the same time, the maximum SMC stiffness μsmc increases for larger radial tilts, since a higher
stress has to be generated in order to produce the same circumferential stress. Then in figure 10,
we demonstrate the induced axial stretch λ2 and the amount of shear γ of the passive and active
material behaviour of the media strip, which is illustrated in figure 8, under an applied uniaxial
extension in the circumferential direction. In order to obtain the passive material behaviour, we
simply omitted the active contribution of SMCs. The radial tilt has a significant influence on the
transverse deformation, as can be seen from the axial stretch λ2. The medial strip flattens out at
larger radial tilts, which seems intuitive as the active SMCs then tend to compress the medial
strip. In addition, the amount of shear γ decreases with smaller radial tilts, so that γ = 0 results
for a radial tilt of 0◦, which is to be expected owing to the symmetry.

We must emphasize that the approach presented depends on the assumption that the radial
tilt in each lamellar unit is constant across the media. A varying radial tilt would lead to an
inhomogeneous deformation, which could subsequently lead to a bulging of the specimen.
Length–tension experiments should therefore always be carried out in a biaxial test setu-up in
order to record as much of the contraction deformation as possible.
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Figure 10. Results of uniaxial extension tests with passive and active material behaviour of the medial strip showing (a) the
induced axial stretchλ2 and (b) the amount of shearγ over the applied circumferential stretchλ1 for different radial tilts. Note
that the legend in (a) also applies to (b) and that an increment of 10◦ was used.

5. Conclusion
We recently proposed to investigate further aspects of the initiation and propagation of aortic
dissection by including the active contribution of SMCs in a constitutive model of the human
aortic wall [21]. Building on this, we outlined the importance of contractile SMCs in this study and
presented a layer-specific constitutive framework that models the passive and active mechanics
of the aorta by using a novel, purely mechanical constitutive model of the active contribution of
SMCs. We have applied the DFD method, which is based on the original framework proposed
by Li et al. [16], and modified it to an isoparametric formulation by changing the numerical
integration method and implementing a non-uniform discretization of the unit hemisphere in
order to efficiently model the dispersed alignment of the fibrous constituents and the dispersed
arrangement of SMCs. Experimental data were then collected from our laboratory and from the
literature and subsequently used to identify the constitutive parameters. This enabled the initial
investigation of the influence of the transmural arrangement of SMCs on the mechanics of a
healthy aorta, even without sufficient experimental data. In the present study, however, one can
only speculate about a possible transfer of the results obtained to aortic dissection.

The characteristic length–tension behaviour of SMCs is modelled using a Weibull distribution
that is suitable to approximate the asymmetric contractile response. The distribution function
can be interpreted as the efficiency of actin–myosin motors as a function of their overlap before
contraction. The fraction of contractile SMCs reported to change in cardiovascular diseases
can be controlled by an independent scalar parameter. The constitutive models of the passive
constituents, i.e. ground substance, collagen fibres and elastic fibres, which are required for the
formulation of a layer-specific model of the aortic wall, are adapted from previous studies [16,21].
The model for the active stress contribution can be extended in various ways in the light of new
experimental data. Contraction-specific parameters such as the stretch with optimal overlap can
be made dependent on the position of an SMC in the reference configuration, which enables the
introduction of transmural heterogeneity. Another possible extension is the inclusion of tissue
remodelling (e.g. [68]), which could alter the contraction behaviour of SMCs by changing their
orientation according to an optimality such as the direction of the largest Eulerian principal strain.
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In order to evaluate the efficiency of the isoparametric DFD method and the non-uniform
discretization of the unit hemisphere, convergence rates were compared for various numerical
examples, i.e. uniaxial extension, simple shear and a large-scale computational model. The results
suggest that spherical triangles should be chosen in favour of angular elements. In addition,
a low-order numerical integration method, such as the centroid rule, provides results that are
often even better than results obtained from high-order numerical integration methods. Finally,
the large-scale computational model showed that a large number of elementary areas increased
the computational time dramatically and, moreover, the results did not improve significantly
when the number of elementary areas was increased above 256. However, we emphasize that
the discretization of the unit hemisphere has to be chosen depending on the application, since
efficiency and accuracy depend heavily on the boundary-value problem and the associated
deformation.

The fitting procedure for the various aortic constituents is then detailed. An MLE is used to
determine the structural parameters from histological data. Layer-specific PDFs for collagen fibres
and partly for SMCs are fitted to statistical data from healthy human thoracic aortic tissue, taken
from Holzapfel et al. [33] and Schriefl et al. [64]; however, there are no quantitative experimental
studies on the orientation of elastic fibres nor on the out-of-plane distribution of SMCs in aortas.
Therefore certain parameters have to be guessed heuristically. The structural parameters were
then determined with experimental data from our laboratory and from the literature [23] in order
to determine the remaining mechanical parameters for the passive constituents. Then, we applied
the LSQ regression to obtain the mechanical parameters of passive and active mechanics of the
aorta.

To determine the passive parameters, layer-specific uniaxial extension tests were used from
dissected thoracic human aortas, which come from our laboratory. However, the regression results
showed that a non-physical exponential stiffening occurs at higher stretches, which is a limitation
of the exponential model used. Since high stretches are known to be non-physiological, the model
is therefore not used within this domain. However, by increasing the number of parameters
used for the LSQ regression, the results of the model regression could be improved. This would
cause the parameters to lose their physical meaning. In addition, unsuitable parameter ratios can
be obtained, which lead to undesirable material behaviour, such as an auxetic behaviour [69].
Therefore, we wanted to provide a set of parameters in this study, all of which have a physical
meaning. In other words, every single parameter should be based on experimental results. Under
this condition, we had to use experimental data from different sources, which subsequently affects
the quality of the result. Other models, such as bilinear models [69,70], could be considered as
replacements, but it is questionable whether similar results could be delivered.

For the active parameters, because of the lack of experimental work on the characteristic
length–tension behaviour of human vascular SMCs, the experimental results of Murtada et al. [26]
on healthy porcine thoracic aortic tissue were scaled to human proportions, which corresponds
to an approach proposed by Haspinger et al. [53]. In addition, the constitutive model for active
SMCs is fitted for different radial tilts, which has a significant influence on the deformation after
contraction of the tissue.

One limitation of this study is that the experimental data used for the fitting process originate
from different donors, in different locations and with unequal health situations. This is due to
the limited availability of experimental data. To the best of the authors’ knowledge, there is no
study documented in the literature in which structural investigations and mechanical tests, both
passive and active, were performed on a single healthy or diseased donor. Therefore, we collected
experimental data from various studies in order to obtain realistic fitting results in the setting of
dissected human tissue. Within the context of this study, only initial computational results on the
influence of the radial tilt of contractile SMCs could be shown.

In summary, we derive the following conclusions from this study. First, the DFD method can
also be used in connection with dispersed SMCs. In addition, a low-order numerical integration
method is often sufficient and a non-uniform discretization over the unit hemisphere is of only
limited use to the computational results, as it depends on the application and the associated local
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deformation. However, when used appropriately, this can significantly increase computational
efficiency. In addition, even a small number of elementary areas can express the results of a
large-scale computational model with only a few deviations. Second, in the absence of sufficient
experimental data, the results indicate that the active contribution of SMCs has a remarkable
impact on the mechanics of the healthy aorta. As mentioned above, it is crucial that the
constitutive model for SMC activity be fitted to representative experimental data. In particular, a
biaxial test set-up for length–tension experiments on human tissue and histological investigations
of the SMC arrangement are prerequisites for carrying out realistic simulations. In the present
case, the multiaxial nature of the deformation after contraction leads to large uncertainties in
the regression to uniaxial extension data. Third, the radial tilt has a noticeable influence on
the mechanical behaviour of the aorta. Since the vessel wall follows the principle of optimal
operation, which tries to maintain a preferred state of mechanical stress [71], it can be assumed
that the aorta is able to produce a wide range of transmural stress gradients by varying the
arrangement of SMCs. Even if the induced shear deformation is comparatively small, its influence
should not be underestimated, since additional normal stresses are generated in finite elasticity
[18]. In addition, if a shear deformation occurs in sensitive areas of the aortic wall and exceeds
a critical threshold, the elastic lamellae can tear from the SMCs. An aortic dissection can then be
initiated from these sites [11].

To conclude, it can be said that the proposed purely mechanical constitutive law for the active
contribution of SMCs is straightforward to use and implement, but also general enough to reflect
the characteristic length–tension behaviour of SMCs of the aorta. The fitting procedure provides
an insight into available experimental data and open questions. In the future, this method will
also be suitable for application to novel experimental data. Moreover, the proposed constitutive
model will be applied to selected applications in a follow-up study in order to investigate the
influence of the radial tilt of contractile SMCs in both healthy and diseased aortas. Its simplicity in
combination with an efficient and isoparametric DFD method will enable future use in large-scale
computational models.
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