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For physicians, it is often crucial to monitor hemodynamic parameters to provide appropriate treatment for pa-
tients. Such hemodynamic parameters can be estimated via electrical bioimpedance (EBI) signal measurements.
Time dependent changes of the measured EBI signal occur due to several different phenomena in the human
body. Most of the time one is just interested in a single component of the EBI signal, such as the part caused
by cardiac activities, wherefore it is necessary to decompose the EBI signal into its different source terms. The
changes of the signal are mostly caused by respiration and cardiac activity (pulse). Since these fluctuations are
periodic in sufficiently small time windows, the signal can be approximated by a harmonic series with two dif-
ferent fundamental frequencies and an unknown number of higher harmonics. In this work, we present Bayesian
robability heory as the adequate and rigorous method for this decomposition. The proposed method allows, in
contrast to other methods, to consistently identify the model-function, compute parameter estimates and predic-
tions, and to quantify uncertainties. Further, the method can handle a very low signal-to-noise ratio. The results
suggest that EBI-based estimation of hemodynamic parameters and their monitoring can be improved and its re-
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1. Introduction

There are many experimental methods to determine hemodynamic
parameters. Most of them are invasive and therefore, electrical bioim-
pedance (EBI) measurements, pulse transit time methods [23] or pho-
toplethysmography [7] provide interesting non-invasive alternatives
[24]. The EBI method is well established, cheap and relatively
easy-to-use. Moreover, it is suitable for time-continuous and long term
measurements. Almost all periodic changes in the EBI signal are caused
by respiration and cardiac activity [21]. Blood has a lower resistivity
than other parts of the human body, which causes the injected electric
current to flow mainly through blood vessels. Thus, local changes of
blood distribution due to cardiac activity cause periodic changes in the
EBI signal for sufficiently small time windows. Moreover, the changing
air volume in the lungs during the breathing cycles also causes periodic
changes in the resistivity and therefore in the EBI signal [4]. Since the
EBI signal of a living human body mostly depends on its cardiovascu-
lar activity [8], it provides a suitable tool for estimating some hemo-
dynamic parameters. For that purpose, however, it is crucial to sepa-
rate the signal into its source terms. A few examples of medical appli-
cations, where the decomposition of the signal improves the results, are
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heart rate detection [6], estimation of the cardiac output [10] or the
reconstruction of the central arterial pressure waveform [19]. Several
techniques addressing EBI signal separation exist in the literature, such
as independent component analysis [22], ensemble averaging [9] or
adaptive filtering [25]. Krivoshei et al. [18] proposed an adaptive
phase-locked loop method and Butsenko et al. [5] proposed to separate
the signal via sparse reconstruction. However, none of these methods
are able to quantify also the uncertainties.

In contrast, Bayesian probability theory allows not only to decom-
pose the signal, but also to determine the uncertainties of both the de-
composed signal and of the estimated parameters. Another major advan-
tage of the Bayesian approach is the capability to handle measurements
with a very low signal to noise ratio (SNR), as will be shown in this arti-
cle. Our method could possibly be used to improve estimates and uncer-
tainties of e.g. hemodynamic parameters that are based on decomposed
EBI signals.

The remainder of this paper is organized as follows. In Section 2, we
outline the basic principles of Bayesian probability theory for the read-
ers’ convenience. In Section 3, we develop the method and in Section 4
we validate the method with artificial data. In Section 5 we illustrate an
application to real EBI measurements.

2. Bayesian probability theory
Here, we face an inverse problem, in which the question is how

to find the causes given observed data and some prior knowledge.
Bayesian probability theory is a consistent and successful tool to deal
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with such problems. Here, we want to outline the main aspects of this
approach. For more detailed information about Bayesian probability
theory we refer to [14,26,20].

2.1. Probability

Probability is a measure for the correctness of a proposition (hypoth-
esis), corresponding to a statement that can only be true or false. Proba-
bility theory can therefore be viewed as the generalization of the propo-
sitional calculus to the case of partial truth. Probabilities can have val-
ues between 0 and 1, corresponding to the impossible and to the certain
event, respectively. It is important to distinguish between the probabil-
ity p(x) that a certain proposition x is true without further knowledge
and the conditional probability p(x | y) that the same proposition holds
conditioned on some given information y, e.g. some measured data. Like
in Boolean algebra, propositions can be combined by the logical AND
(A) and a logical OR (V). In Bayesian probability theory the probability
plx Ay) is denoted by p(x, y) for better readability. Probabilities have
to fulfill two basic rules: the sum rule and the product rule [14,26,20].
With these rules, it is possible to derive the marginalization rule and
Bayes’ theorem.

2.2. Marginalization rule

The marginalization rule for discrete variables (propositions) reads
M
PG D = Y pee |y DG | D), )
i=1

where {¥;} is a mutually exclusive and exhaustive set of M propositions
to fulfill the normalization requirement [26].

The proposition I contains all the relevant background information.
For continuous variables, the marginalization rule takes an integral form

P D) = / e | y.Dp(y | 1)dy. @

We use the same symbol p(e) for probabilities and probability density
functions (pdf). Which one we are referring to will be clear depending
on whether the relevant variable is discrete or continuous.

2.3. Bayes’ theorem

Bayes’ theorem follows directly from the product rule [14,26,20]
and reads
p(xly’])zp(ylx,l)-p(ﬂl)v @)

py 1D

Bayes’ theorem is valid for both cases of discrete or continuous vari-
ables x and y. Accordingly, we have to use the corresponding proba-
bilities or pdf. Given, e.g. a set of parameters x and measured data y,
then Bayes’ theorem (3) allows to determine the probability distribution
pCx |y, D for the parameters given the data. To achieve this, one needs
knowledge of the likelihood p(y | x, I), that encodes the error statistics
of the experiment, which in many cases is described by a Gaussian. The
prior probability p(x | ) represents the state of knowledge or ignorance
about the parameters before the experimental data are known. The de-
nominator p(y | I) in (3) is called the evidence (5).

We now present a brief discussion how these ingredients can be de-
termined in a given physical problem. For a detailed presentation, we
refer to the ample literature.

2.3.1. Prior probability

There are several principles to derive a prior distribution [28], such
as transformation invariance [13,16], the maximum entropy principle
[11,12,15] or reference priors [2]. A discussion of these approaches is
beyond the scope of the present paper and we refer to the available liter-
ature. Here, we will merely present some models useful for the specific
problem.

2.3.2. Likelihood function

The likelihood is the probability (density) for the data y given all pa-
rameters and the underlying physical model. More specifically, if we as-
sume a certain model to describe the data and we know its parameters,
we should be able to determine the ideal values of the data . Since ex-
perimental data always have noise, their measured value will be

y=y+n, 4

where 7 is the experimental noise/uncertainty, which in many cases is
described by a Gaussian distribution. The term “likelihood” instead of
probability is used when referring to variables in the conditional com-
plex behind the conditional mark |, i.e. for the parameters x the prob-
ability (pdf) p(y|x) is considered as likelihood. If p(y|x1) > p(y|x2), it is
reasonable to assume that x; is more likely to be the correct parameter
set describing the data than x,. But what we really need to reach this
conclusion is p(x1|y) > p(xa|y) [26,20].

If the distribution of the noise is known, one can easily write down
the likelihood function of the measured data. This will be discussed in
more detail in chapter 3.

2.3.3. Posterior probability
The posterior probability gives the probability that, knowing the
data, the model is described by certain values of parameters.

2.3.4. Evidence

As one can see from (3), in the context of parameter estimation, the
evidence merely gives a constant term that can be computed at the end
of the calculation. However, the evidence is important when one has
to select between different models, as will be discussed in Section 4.1
[26,20]. The evidence is calculated by marginalization (2), which in
the case of continuous variables x and y becomes

P01 = [ pr 150 pte | D ®)

2.4. Moments of probability distributions

Information about a pdf is given by their momenta. The nth moment
is given by

"y = /x”p(x | )dx. (6)

The first moment (n = 1) is also called the mean. The variance is de-
fined as

Var(x) = <x2> —(x)?. )
The standard deviation is defined as the square root of the variance,

Std(x) = 1/ Var(x), ®

and is a measure of the uncertainty of the estimated mean.
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3. Bayesian data analysis of the bioimpedance signal
3.1. Model function

As the changes of the EBI signal are assumed to be periodic in time,
we approximate this by the lowest order terms of a harmonic series
expansion. In principle, the EBI signal is determined by the respira-
tion and the cardiac activity [21]. Therefore, we assume that there are
two fundamental frequencies in the model function. Due to the wave
form of the signal, there are also integer multiples of these frequencies
(higher harmonics) present in the spectrum [17]. This is confirmed by
the frequency spectrum of the experimental EBI signals showing domi-
nant peaks that can be attributed to two fundamental frequencies and
their integer multiples. The model function should therefore consist of
an harmonic series that depends on two fundamental frequencies w, and
@y, including their n, and n, higher harmonics, where r denotes respira-
tion and p denotes pulse.

m

2

=Y (Bk Sin(@ 1)+ Bz cos( t)) ©)

k=1
withm = 2(n, + n,) and

_ k-, k<n,
YT\ h=n)w, 0 k>n,

For better readability we write the function f(t) in a more compact way
f0 =Y B G. (10)
J=1

The expansion order m is an even integer, as we always have the pair
of cos and sin. The basis functions Gi(t) are extracted by comparison
with (9). For simplicity, we restrict the analysis to the cases n, = n, or
n, = n. + 1. In other words, if m/2 is even n, = n,, otherwise we use
n, = n. + 1. The case n, ~ n, turned out to be where we found the high-
est posterior probability in most cases we tested. That is why we used
this restriction to keep the computational effort as small as possible.

3.2. Bayesian spectrum analysis and parameter estimation

Bayesian inference allows to estimate the optimal values of model
parameters, as well as their uncertainty. In our case these parameters
are Bj and w, with @ = {r, p} in (9) and the experimental noise level
o (see below). This idea is outlined in the book [3]. The EBI measure-
ments provide a set of data d; at times t; with i = 1, ..., N. We assume
that each measured data point d; is equal to the model f(t;) corrupted by
additive noise 7;,

d; =f(t) +n;, 11)

where 7; is Gaussian distributed, i.e. ; ~ #'(0, 52). For simplicity, the ex-
perimental noise level ¢ is assumed to be the same for every data point
and uncorrelated at different time instances. Therefore, for a given value
of the parameters Bj, ,, o, the likelihood function, i.e. the probability
to measure a given set of values d; for the data, is given by

N N
_ 1 \2 7%
gp(dilBj,wmo,m,l) = (27:02) e 272, 12)
with
l 2
®= (d—/t))". 13)

i=1

When expanding the square, ® contains mixing terms of the form B;B;

which are difficult to treat. As suggested in [3], it is convenient to re-
place the functions Gj(t) with an orthonormal set of functions Hy(t) as-
sociated to new amplitudes Ag. This procedure can be better described
within a matrix-vector notation whereby d, f, B, and A are vectors with
components d;, f(t;)), Bj, and Aj;, and G and H are matrices with elements

Gy = Gi(t), and Hy = H ().

The orthogonalization is achieved by the transformation

H=GS" a4
with S being the overlap matrix of the original basis functions, i.e.
§=G76,

leading to the orthonormality condition

H'H=1 15)
The coefficients transform as

A=S3B, (16)

so that (10) can be written as
f=GB=HA. 17)

In the new orthonormal basis the argument (13) of the exponential in
the likelihood simplifies to

O=0+UM—h)"4-h), 18)
with h=dH, 19
& =d? - n2. (20)

We have now an expression of the likelihood (12) in terms of the new
coefficients A

N
p(ar|A,w,a,m,1)=(L)2 ¢T3, 1)

2xo?

with @ given in (18). To estimate the optimal values of the model para-
meters we need the pdf p(A, w, ¢ | d, m, I) of the amplitudes A, frequen-
cies w = {w), o;}, and noise level ¢ given the information on the mea-
sured data d and the expansion order m. The set of times t, at which the
signal values d are measured, are put into the background information,
here represented by I, as it is not explicitly addressed in the calculations.
Bayes’ theorem allows to write
pA,®,0 | d,m,I)

— pld|A,w,0,m.0) p(A,e.clmI) ) (22)
p(d|m.)

Next, we will discuss the priors for the parameters. First of all, these pa-
rameters are logically independent and therefore the pdf factorizes

pA,@,0 | m,1)=pd|m,Dpe|Dp( | I).

We have omitted the conditioning on m in the last two terms as w = {wy,
wp} and ¢ are independent of the number of higher harmonics. For all
cases, we assume little prior knowledge and, therefore, use un-infor-
mative priors. We begin with the noise level . We assume that we
know nothing about ¢ except that it is a scale parameter, i.e. it lies in
R, = (0, ) and the pdf should be invariant against scaling ¢ — ac with
an arbitrary factor a, otherwise it would make a difference which units
we use. Then, Jeffreys’ prior (see e.g. [20]) has to be used

pc|D=1/c. (23)

The fact that we use an almost completely ignorant prior is reflected in
the fact that the latter is not normalizable. This is no problem as long
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as the final result can be normalized, which is generally the case if the
data entering via the likelihood is meaningful.

In the case of the two fundamental frequencies w, with a € {r, p}
we assume more knowledge than in the case of the noise level, because
we know roughly the physiological range. Let us denote these intervals
as Q, = (Qf,, Q7). Then the uniform prior is constant within this interval
and zero outside of it,

1
plw,) = — 0 (Ql<w,<Q) .
o QZ — er ( o a nr) (24)
We have chosen reasonable values €, = (0.6, 6.0) rad/s and
Q, = (135, 17.5) rad/s. These intervals take into account that the nat-
ural variation of the respiratory part is greater than that of the pulsatile
part. The exact choice of these intervals is generally quite unimportant
for the final result, as it is dominated by data constraints.

For the amplitudes we could also use uniform priors, but instead it is
advantageous to use the so-called signal-power prior, proposed by [3]

pAI6) o exp <—§ Z(f(z,—>>2> :

The A-dependence enters via the model functions, defined in (17). The
properly normalized prior then reads

m _L g2
PpAm,8,1) = @Qn)" 267 WY (25)

where we have used the orthonormality of the basis functions. To get rid
of the unknown hyper-parameter § we invoke again the marginalization
rule

p(A|m,I) = /dﬁp(Alm»éJ)p(fSII% (26)

Since § is a scale parameter we use again Jeffreys’ prior, i.e. p(§|D) « 1/6,
and obtain
m 2\"2

pim D) = 2o (%) (%), @)
with I'() being the Gamma-function and Z the normalization constant.
As Jeffreys’ prior is not normalizable, however, the resulting prior in
(27) also loses its normalizability, but, as in the case of Jeffreys’ prior,
this is irrelevant for our purposes, as in combination with the likelihood
function the final results will be normalizable again.

Good data typically lead to likelihood functions which are sharply
peaked as function of the parameters, whereas the prior typically varies
little within the parameter range of the peak. Therefore, the A-depen-
dence of the prior has negligible influence on the parameter estimation.
On the other hand, its m-dependence will become important for model
comparison (Section 3.4). This is due to the following property. The
likelihood increases monotonically with increasing m, as the misfit de-
creases. On the other hand, the prior typically decreases with increas-
ing m. Here, the prior cannot be ignored and only the interplay of both
terms leads to a peak in the probability for m.

Now that we have defined the priors, we can calculate all the mar-
ginal probabilities for the parameters by the marginalization rule (2).
We begin with the probability for the frequencies w which is obtained
by integrating with respect to all other parameters

p(a)|d,m,[) = fdadeAp(a),A,0'|d,m,I)
=p@|I) [dop(c|D)
X/dVAp(dlco,A,a,m,I) p(Alm,I)‘

Here the infinitesimal integration measure is given by dV, = [],d4,.

Due to the large number of data points, the Gaussian likelihood is
sharply peaked in A as compared to the slow variation of the prior
p(A | m, D), see (27), so we can replace the prior by its value at the max-
imum of the likelihood A — h (see (18)). Then all integrals can be per-
formed analytically, resulting in

m=N

1 ~
p(wld,m,1)=§<b 2. (28)

Here, N is the number of data points and m is the number of basis func-
tions, and @ was defined in (18).

For the other quantities of interest we have to integrate over the fre-
quencies. As they enter non-linearly in the basis functions and corre-
sponding orthogonalization, an analytic integration is impossible. In this
case, it is expedient to first integrate over the amplitudes and the noise
level, which can be done analytically. That leads to probability densities
conditioned on the frequencies w. Finally, these expressions have to be
integrated numerically over frequencies @ weighted by the pdf p(w | d,
m, I), given in (28).

In these steps, the pdf p(¢ | w, d, m, I) is a crucial quantity. It can be
computed analytically in a similar way as p(w | d, m, I) resulting in

B
plo | ®,d,m,I) = %a_(N_'"“)e_m. (29)

From this one obtains the analytic expression for the vth moment (6) of
the noise level conditioned on w:

F(NZ"'V).@)?

()0 = > (30)
N—m 2
r(*2)
and reads off the mean value of 6>
n @
(O- >a)_N_m_2' (31)

According to (20), & is the misfit, and (62),, is therefore a reasonable
estimate for ¢2, which is the squared noise level of the data points. For
the variance of o> we obtain

(1),

For N > m, Eq. (32) shows that the variance/uncertainty of the squared
noise level is O(1/N) and therefore very small due to the large number
of data points supporting the estimate of the few unknown parameters.
The same is true for the noise level ¢ itself, which can therefore be ap-
proximated by a Dirac distribution

p(o | o, d,m1) = 6(c—5,), (33)

S0 =/ (%), 34)
Next we compute the conditional pdf for the amplitudes

p(A|a),aIm,I) :/do‘ p(A|m,o',d,m,I)-p(o'\(o,aﬁm,I) (35)

With this, together with (33), we can determine the mean and the co-
variance of the amplitudes conditioned on @ (details are in Appendix
A):

Ao = i, (36)
(A4 A ), = &iékk" (37)

As mentioned before, these estimates have to be integrated numerically
over frequencies w weighted by the pdf p(w | d, m, I), given in (28).
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3.3. Signal estimation and uncertainty band

The aim of this section is to estimate the signal and calculate the as-
sociated uncertainty band. In the following equations, f; represents the
value of the model function at time ¢; for a given set m of higher harmon-
ics. For better readability we do not write m explicitly in the conditional
part of the pdfs. The starting point is the pdf for the value f; of the signal
[20, p. 3511].

p(fildI) = [dV,[dV,[dop(fi| Ac.o.d)

xp(dow|dl). (38)

Here the infinitesimal integration measure is given by dV,, = [[;dw;.
For given parameters @ and A, the function value is exactly defined by
17), i.e.

f=HA. (39)

In this case, the probability p(f; | A, 6, @, d, I) is a delta distribution
8(f; — (HA);), where (HA); denotes the ith component of the vector HA.
This leads in combination with (38) and (6) to the following expression
for the expectation value of the vth moment of the signal f; at time ¢;

)

dt,f*p(fi 1 d.o.1)
I dV,dV 4do(HA) p(A, 0, | d,])
dVp(@ | d,1) / dV ((HA)! (40)

X/dap(A | o,,d,Dp(o | @,d,1).

As explained above, the pdf for ¢ can very reliably be approximated
by a Dirac distribution (33). Thus, (40) simplifies to

()= [ Wop@ian (aay),. @
with the definition of the conditional mean as before
(@AY, = [ @V @1 p (415 0.0.1). 42)

The pdf p(4 | G, ®,d,]) as derived in Appendix A is given by

m —— (4-h)?
PA |G, 0.d1)=5"Q21) 2 e %o ) (43)
For the first moment we have
((HA);),, = (Hh),. 44)

Then the integral in (41) with respect to the amplitudes yields
(i) = /dVa,p((D | d, 1) (Hh),. (45)
It should be noted that, by definition, H and h depend on w. The squared
uncertainty, that shall be denoted by (Af)?, is defined as
@Y= () - (46)
The evaluation, outlined in Appendix B, yields
Afiy = [dVep(e|dT)

<[ (1), = ((1a)),)7) + @iy 5] @

The remaining integrals in (45) and (47) over the frequencies w, based
on the pdf for @ given in (28), are performed numerically by the
nested sampling technique [27], which turned out to be more efficient

than standard numerical integration schemes. In this work, the analytic
evaluation of the integral over ¢ was possible because N > m, whereas
the analytic integration over A relied on a slowly varying prior for A. If
these conditions are not met, nested sampling can also be used for nu-
merical integration over these parameters.

We now additionally discuss the special case that p(w |d, I) is
sharply peaked. Then p(w | d, I) can be approximated by a delta-distri-
bution, centered at @, and the first contribution to the uncertainty van-
ishes and we have

&f) ~ (HHT), 57, (48)

where H now depends on &. Hence, the first contribution in (47) stems
from the uncertainty in @ and the second is due to the uncertainty of the
amplitudes, which is proportional to &5. This statement needs clarifica-
tion: The uncertainty of @ is given by the pdf p(w | d, I) in (28). Still for
the case of negligible uncertainty in @ we can obtain a rough estimate
of the size of the signal uncertainty. To this end, we consider the mean
square signal

Z (2 =h" H'H h=d"HH"d = d"Pd.
i 11

& is a projection operator into the subspace spanned by the model func-
tions. For a rough estimate we can assume & ~ 1 1, which means that
the misfit is small. Then

Y (i) ~ d"d = N&®
i

and hence

Y (&) =t (HH") 67 = tr (HTH) 55 = mt,

i

The relative uncertainty is then given by the ratio

> N\ g2

The first factor is the inverse square root of the number of data points
per unknown amplitude and the second factor is the noise-to-signal-ra-
tio. This is a very reasonable behavior.

As discussed above, we are interested in separating the total signal
into the respiratory and pulsatile parts. This is obtained in a very simi-
lar way. Let f* a € {r, p} be the two components of the signal. These are
defined as a sum over a particular subset of indices j in (10). In the ma-
trix/vector notation of (17) we obtain f* by setting to zero the columns
of the matrix G corresponding to the parts of the signal we are not con-
sidering. This can most elegantly be achieved by introducing the diago-
nal matrix P* with diagonal components

(49

P = 1 Gjis part of componeTlt a of the signal
i 0 otherwise

Then we have
% = GP"B.

Next we use the transformation to the orthonormal basis functions in
(14) and (16)

1 1
f*=HS2P*S"24 = H°A.

=H*

(50)

Hence, for the mean value or the uncertainty of /* we merely have to
replace H by H* in (45) and (47).
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3.4. Model comparison

The expansion order m, describing the number of higher harmonics
in the model function (10), is still unknown. Different m can be viewed
as different models with different complexity and our goal in this section
is to determine the probability for a model given the data. This can be
achieved by Bayes’ theorem.

pd | m,Dp(m | I)
p(m | d,I) = —dlh (51
Since we do not prefer one model over another, the prior p(m | I) has the
same value for every model. The evidence p(d | I) is also a constant as
far as the dependence on m is concerned and, therefore, we just have to
compute the likelihood p(d | m, I) and fix the normalization afterwards.

The pdf p(d | m, I) is actually a marginal likelihood, since in compar-
ison to the full likelihood p(d | A, w, 6, m, I) in (21) the parameters are
missing. The marginal likelihood is obtained by the marginalization rule

p(dlm1I) = [dVe p@|m,1)[do p(c]|])

% [dV 4 p(d| A w.c.m. 1) p(A| m.1). 62

In contrast to the case of parameter estimation, the un-informative prior
for the amplitudes (25) now plays a crucial role. Due to its m-depen-
dence it penalizes models with larger m, i.e. more complex models
(so-called Ockham factor). The likelihood function p(d | A, w, 6, m, I) is
a Gaussian (21), which is sharply peaked as a function of the amplitudes
as compared to the weak variation of the prior. Therefore, we can re-
place A in the prior by the position of the peak of the likelihood A — h.
Then we have along with (27), (21), and (18)

/dVA pd|A,o,0,m DpA|m,I)

~pd=h|ml) /dVAp(dlA,(o,O',m,])

m -z [
o<(27r)_7<§) ZF(%) e 202 g~ N=m),

Next we evaluate the integral over ¢ in (52), yielding the final result for
the model probability

Zn

P(m [ dsI) = =z

Z, = Qo Er(g)r(5n)

X [dV p(@ | 1)("72)_% (%)_(Nz_m)
YnZnm

A closer look reveals the competition between terms that tend to re-
duce the misfit and those terms (Ockham factor) that try to reduce the
complexity of the model, i.e. keeping m small. This reveals one of the
strengths of the Bayesian approach. In contrast to the so-called Akaike
information criterion [1] which adds an ad-hoc penalty term to the like-
lihood, the Ockham factor is an integral part of the Bayesian approach.

The remaining integral is again evaluated by nested sampling [27].
Alternatively, MCMC-methods are also suited to solve such type of inte-
grals [28].

In the previous sections of parameter estimation (Section 3.2) and
signal estimation (Section 3.3), we have tacitly assumed that
m = 2(n, + np) is known, which is not the case. Therefore, instead of
(22) we actually have to compute the probability density for the para-
meters without knowing m, i.e. p(A, @, o | d, I). This can be obtained in

T =

terms of (22) via the marginalization rule (1)

p(A,w,a|d,1):;p(A,w,0'|d,m,l)p(m|d,I), (53)

leading to a sum over m in (28). This means that we have to average
the estimates also over m, e.g. Y.(f;) p(m | d, D in (45). However, we
will see in Sections 4.1 and 5.2.1 that p(m | d, D) is sharply peaked at a
single value of m, i.e.

pim | d, 1) =5, 4

where 6,7 is the Kronecker-delta. Then the sum in (53) shrinks to a sin-
gle term and we have

pA,@,c|d, D)~ pA e,c|dinl). (54)

This means for the parameter estimates (Section 3.2) and signal esti-
mation and uncertainty quantification (Section 3.3) that, once the most
probable model 7 has been determined, it can be substituted for m
throughout, as was done in the following sections.

4, Validation with artificial data

In this section, we want to test the efficiency of the approach with
artificial data. These are generated with the help of the model function
in (10) plus additive Gaussian noise with a level of & = 0.3. The para-
meters of the model function are chosen at random and we use m = 14
or more specifically n, = 3 and n, = 4. A data set with N = 5000 data
points was generated at equidistant times with a time step of ﬁ s. The
generated noiseless data and their different sources are plotted in Fig.
1.

We apply the Bayesian approach to determine the probability for dif-
ferent models m and to estimate the parameters of the model function.
Eventually, we decompose the signal into the pulsatile and respiratory
part and provide uncertainties for all quantities.

4.1. Model selection

We start with model selection. As discussed in the introductory part,
we restrict the discussion to the case n, ~ n,, or more precisely, n, = n,
for even m/2 and n, = n, + 1 for odd m/2. It should be remembered
that m itself is always an even integer, since the basic functions cosine
and sine are included in pairs. The results are displayed in Fig. 2, where
we have varied m = 8, 10, ..., 18 corresponding to (n,, np) = (2, 2), (2,
3), ..., (4, 5).

As one can see, there is a sharp peak at m = 14 (n, = 3, n, = 4),
which corresponds to the values that have been used to generate the ar-
tificial data. This result nicely illustrates the power of the Bayesian ap-
proach as far as model selection is concerned. A simple minimization
of the misfit would always prefer the most complex model, i.e. the one
with the largest number of higher harmonics. It is the Ockham factor
that keeps m as small as possible.

4.2. Parameter estimation and signal analysis

Due to the sharp peak in the model probabilities, we can use (54)
and simply continue with the most probable model. We then estimate
the parameters of the most probable model function and decompose the
signal into its source terms.

In Table 1, the estimated values for frequencies and the noise level
are compared with the true values of the artificial data.

We observe that the parameters and uncertainties are reliably ob-
tained by the Bayesian approach. We will not discuss the amplitudes,
as it is more instructive to directly compare the signal and its individ-
ual contributions, which are depicted in Fig. 3. In the figure the true
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Fig. 1. Artificial data used to benchmark the approach. The upper panel shows the total
signal. Pulsatile and respiratory part are plotted in the middle and lower panel, respec-

tively. The ordinate axis stands for the negative absolute value of the impedance shifted
by its mean value.
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Fig. 2. Result of the model comparison for the artificial data. The probability for the model
function is strongly peaked at m = 14 (n, = 3, n, = 4) which corresponds to the values
that have been used to generate the artificial data.

curves (artificial data without noise) and the estimated signal and its
components match within the line thickness.

4.3. Uncertainty quantification

In order to assess the reliability for our analysis, we determine the
uncertainty bands of the signals. The results are depicted in Fig. 4.

The true total signal as well as its components lie within the uncer-
tainty bands (see for comparison Fig. 1). The width of the uncertainty
bands is very small due to the fact that we have way more data points
than unknown parameters.

Table 1
Comparison of the estimated values and the true values of the frequencies and the noise
level.

Estimates
(o) [rad/ Awy) [rad/ (wp) [rad/ Adwp) [rad/ G, AG,
s] s] s] s] [«] [«2]
3.46 0.08 15.62 0.08 0.31 0.04
Artificial data input (truth)
w, [rad/s] wp [rad/s] o[Q]
3.50 15.60 0.30

N = 5000

Mock data and estimated signal parts

— mock data

—— estimated signal

—-- estimated pulsatile part
estimated respiratory part

-A|Z(t)| [Q]

=2

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
t[s]

Fig. 3. Comparison of the artificial data signal with the Bayesian estimate and decomposi-
tion into pulsatile and respiratory part (including error bars). The estimated signal fits the
data very well. In the figure the true curve (artificial data without noise) and the estimated
signal cannot be distinguished. Meaning of ordinate axis as in Fig. 1.

4.4. Detecting non-stationary signals

Measurement artifacts or arrhythmic heartbeats will generally vio-
late the implicit assumption of stationarity in the model function (9).
While, at this level, our method is not yet suited to address strongly
non-stationary signals produced by these anomalies, it is able to detect
their occurrence. In order to test such a situation, we model a non-sta-
tionary signal by introducing a single arrhythmic heart beat with de-
creased amplitude. We show in Fig. 5 that such a ‘local’ non-stationar-
ity can be exposed when plotting the misfit term (20) while moving the
time window over the signal. A peak rises and falls above the base line
exactly as the window slides over the arrhythmia, and can be clearly dis-
tinguished from the noise. The signal estimate cannot correctly recon-
struct the arrhythmia due to the limitations of the model function and a
lower limit for a reasonable time window size. This could be addressed
with modifications to the model function, e.g. by equipping the harmon-
ics with a phase, making the amplitudes time-dependent or augmenting
the model function with Fermi functions. Such adaptions of the theory
might be necessary to use it for other biomedical signals such as e.g.
EMG signals.

5. Application to real bioimpedance data

Here, we apply the present Bayesian approach to analyze real EBI
data that stems from a small number of volunteers. Ethical committee
approval has been obtained. We use a set with N = 5000 data points

and a time step of ﬁ s. We note that the method is agnostic to differ-

ent signal compositions due to different experimental parameters such
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Fig. 4. Estimated signal and uncertainty band (uppermost panel) of the artificial data. The
panel in the middle (bottom) shows the estimated pulsatile (respiratory) part and the cor-
responding uncertainty band. Meaning of ordinate axis as in Fig. 1.

as injection current amplitude and frequency. One must not apply any
filters since that would violate above assumptions.

5.1. Elimination of the trend

For this measurement, one electrode was positioned on the left hand
side of the hip and the other one on the right hand side of the neck. In
the real data set, an additional long-term trend has been observed. Such
long-term trends can arise due to, e.g., water displacements in the hu-
man body and can be modeled with additional terms. A convenient way
to model the trend is to add a certain number of Legendre polynomials
to the model function, as they are simple to implement and easy to nor-
malize. This changes only the definition of the basis functions but has
no impact on the other expressions we have derived. The new expansion
reads

f) = ZBJ" G,(0). (55)

j=

Here, the total number of basis functions m is now the sum of the num-
ber of the harmonic functions m,, and the number of Legendre polyno-
mials m;. We use a uniform prior for m; but with an upper limit 7™
such that the Legendre polynomials are not able to describe the periodic
signals we are interested in. This is easily achieved for the pulsatile part,
which has the smallest period. For the respiratory part, the separation is
not so obvious, and we will indeed see that it can lead to ambiguities in

the case of data of poor quality.
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Fig. 5. Analysis of artificial data used to test a non-stationary signal. The upper panel
shows the true pulsatile signal source with one pulse having decreased amplitudes to rep-
resent a heart arrhythmia. In the middle panel, this pulse is superimposed with a respira-
tory signal and noise (blue) and its reconstruction (orange, only intended for visual aid).
The lower panel shows the normalized value of the misfit term (20) as a function of the
moving time window midpoint (window width = 2 s).

150 17.5

5.2. High quality data
We begin with a data set with a high signal-to-noise ratio (SNR).

5.2.1. Model selection

First, we compute the probability for m,, the total number of higher
harmonics, and for m;, the number of polynomials required to cover the
trend of the EBI signal. As before, since we have no preference as far as
my, concerned, we use a uniform prior. Then, the desired joint probabil-
ity for the expansion orders m = {m,,, my} is proportional to the mar-
ginal likelihood p(d | m, I), with the appropriate normalization. Results
are shown in in Fig. 6.

Again we observe a pronounced maximum and we can, therefore,
again use (54) with i standing for n, = 3, n, = 4, m; = 4.

We also observe (not shown in the figure) that, when extending the
time window of the data set, we need more Legendre polynomials to de-
scribe the trend properly.

5.2.2. Signal analysis
Next, we want to estimate the underlying signal of the EBI data and
decomposition into its source terms. The result is displayed in Fig. 7.
We observe that the signal fits well into the error bars of the data.
This is nice, but it only tells us that the model function is flexible
enough to describe the data. A more interesting question concerns the
assumption that the experimental data are distorted by additive uncor-
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Fig. 6. Probability p(m,,, m; | d, D) for the real data plotted for different values for the ex-
pansion orders m,, and m;. The upper part shows the dependence on m,, for different val-
ues of my. The lower diagram represents the result as function of my, for fixed m,, = 14.
The model function with m,, = 14 and m;, = 4 is by far the most probable.
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Fig. 7. Measured bioimpedance data, estimated signal and its components. Here,
N = 5000, which corresponds approximately to a time interval of 4 s. Meaning of ordinate
axis as in Fig. 1.

related Gaussian noise. To verify this assumption we take a closer look
at the difference between the estimated signal and the measured data.
We find that these differences are indeed normally distributed with a
mean x ~ 0 and a standard deviation 6 % 6,. Hence, the assumption of
Gaussian noise is corroborated by the data.

5.2.3. Uncertainty quantification

For the real data, it is particularly important to calculate the uncer-
tainty bands. The estimated signal and its source terms along with the
corresponding uncertainties can be seen in Fig. 8.

5.3. Noisy data

With the Bayesian approach we can also decompose signals with a
very poor SNR. Such a noisy data set of a real EBI measurement signal
is depicted in Fig. 9. It stems from a measurement where the electrodes
were mounted on the lower right arm and on the right shoulder.

Also in this case we find a predominant probability for n, = 3,
n, = 4, and my = 4. In Fig. 10 we compare the joint pdf for the fre-
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Fig. 8. The estimated signal and its uncertainty band for the real data in Fig. 7 is depicted
in the upper panel. The middle (lower) panel shows the corresponding plots for the pul-
satile (respiratory) part. Since the trend is not of primary interest, it is not shown here.
Meaning of ordinate axis as in Fig. 1.

N = 5000
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Fig. 9. A noisy data set from a real bioimpedance measurement. The number of data
points N is again 5000, which corresponds approximately to an time interval of 4 s. Mean-
ing of ordinate axis as in Fig. 1.
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Fig. 10. Joint probability density for the frequencies for the data set of Fig. 7 (left plot) and those of the noisy data of Fig. 9 (right plot).

quencies p(wy, wp | d, ) for the data set with poor SNR with that of the
previous data set, which had a significantly better SNR. In the latter
case, we observe a single narrow peak, corresponding to well defined es-
timates for the frequencies with small uncertainty. In the low SNR data
set, on the other hand, we find a bi-modal pdf. The two peaks are at
the same position as far as w, is concerned but they correspond to two
significantly different values for w,. Consequently, the marginal pdf for
@, still allows a unique estimate of the pulsatile frequency with small
uncertainty. The marginal pdf for w,, on the other hand, has two peaks,
where the peak with the higher frequency at least has a significantly
higher probability than the other one. A multi-model probability den-
sity for the respiratory frequency does not necessarily mean that the cor-
responding signal component cannot be reliably reconstructed. But in
the present case the data are so noisy that the significance of the recon-
structed respiratory signal is completely useless, as one can see in Fig.
11. It may surprise the reader that although the respiratory part of the
spectrum is completely unreliable, the total signal still has a decent error
band. The reason is the following: Respiratory part and trend cannot be
distinguished any more, since — due to the considerable noise — no peri-
odic long-wavelength signal can be detected. As a result, only the sum of
the two signals can be reasonably well determined. The behavior of the
pulsatile part is different, as it is restricted to higher frequencies by the
prior, so that it cannot be misused to describe the slowly varying trend.
If one is indeed interested in the value of w,, only a much longer time
window over several respiratory periods or better prior knowledge can
help in this case. If one is, however, only interested in the pulsatile part
of the signal, then even with the poor data available the signal can fairly
convincingly be reconstructed, as can be observed in Fig. 11.

5.4. Detecting arrhythmias and artifacts

We apply our method to a particularly challenging real data set that
contains a heart arrhythmia and an artifact right next to each other. Sim-
ilar to Section 4.4, we recognize in Fig. 12 two subsequent peaks in the
misfit term (bottom) that can be clearly distinguished form the noise,
exactly where the artifact appears in the bioimpedance signal (middle)
and where the arrhythmia is independently detected in invasive blood
pressure measurements (A-line, top). More interestingly, the arrhythmia
can be clearly distinguished from the artifact despite being less than one
time window (2 s) apart. The arrhythmia is not correctly resolved in the
signal reconstruction (see Section 4.4), however the artifact can be re-
constructed by the Legendre polynomials.
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Fig. 11. Estimated signal and calculated uncertainty band (upper panel) for the noisy data
of Fig. 9. The central panel shows the estimated pulsatile part and the corresponding
uncertainty band. The bottom panel shows the estimated respiratory part and the corre-
sponding uncertainty band. Since the long-term trend is not of primary interest it was not
plotted here. Meaning of ordinate axis as in Fig. 1.

5.5. General findings

In the previous section, we have found that for both data sets the
model with n, = 3, n, = 4, and m; = 4 dominates the joint probability
for these quantities. We have analyzed additional EBI data sets for dif-
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Fig. 12. Analysis of real data containing both an arrhythmia and an artifact, possibly pro-
duced by movement. The upper panel shows the invasively measured pressure (A-line)
with an arrhythmic heartbeat. The middle panel shows the simultaneously measured
bioimpedance signal (blue) with an artifact right before the arrhythmia and its reconstruc-
tion (orange, only intended for visual aid). The lower panel shows the normalized value of
the misfit term (20) as a function of the moving time window midpoint.

ferent electrode positions. Most of these data sets lead to the same con-
clusion. Only in a few cases with poor SNR did the Bayesian analysis
yield smaller values for np,, which is understandable because data sup-
port for higher frequencies is lost in noise. Nevertheless, m,, = 14 can
also be used in these cases, since the estimated amplitude of the addi-
tional functions turn out to be close to zero. Hence all data sets can be
analyzed assuming a fixed set of expansion orders n, = 3, n, = 4 and
ny = 4.

In principle, it is not necessary that the probability for the expansion
orders is peaked at a single point and that this point is the same for all
datasets. The correct Bayesian approach is given in (53) as a sum over
all values of the expansion orders. The advantage of one and the same
single peak for all data sets consists ‘merely’ in the fact that the com-
putational complexity is reduced significantly, as the sum over the ex-
pansion orders can be avoided (see (54)). Since the trend, which could
come from movements of the patient or water displacements in the hu-
man body, is not predictable, it is impossible to say beforehand how
many Legendre polynomials will be needed in the model function. When
considering small time windows (N < 5000) only as in our case, 4 Le-
gendre polynomials can sufficiently model the trend in the data.

The goal of this work is to decompose the signal into its compo-
nents and therefore a rather small time window should be considered
because of the natural variability in pulse frequency. On the other hand,
it is clear that for a good estimation of the respiratory part, one should
instead use larger time windows, where at least two respiration cycles

are included. Time windows of about 4 s (N ~ 5000) appear to be a good
compromise.

6. Discussion

We discuss conceptual differences and similarities to other methods
of parameter estimation and signal reconstruction with EBI signals. The
matter has been posed as an optimization problem, e.g. LASSO regres-
sion [5], principal component analysis (PCA) [22] or the estimation of
a transfer function or filter function [19]. Formally this is

{A(opt)’ w(OPt)} =arg Ting(d | A, @)
,®

with an optimality criterion or loss function &. Amongst these, maxi-
mum likelihood (ML) estimates for the parameters are popular, partic-
ularly (regularized) least squares or those mentioned above. Since the
noise is Gaussian and our prior is approximately flat, our parameter es-
timate for the amplitudes given the frequencies (36) is indeed equiva-
lent to taking the argument of the minimized least squares for a given
set of frequencies. However, in the Bayesian approach there is no need
to introduce any unknown tuning parameters to regularize the, possibly
ill-posed, optimization problem, and the method is robust by design. The
analogy does not generally hold for the frequency estimation because
the posterior probability density function for the frequencies (28) is not
Gaussian and can be skewed or even multi-modal (Fig. 10). Most im-
portantly, the Bayesian approach allows to prescribe a priori known fre-
quency ranges and then demands to integrate over the probability den-
sity function instead of optimizing it. I.e., there appears no optimization
problem at all, neither unconstrained nor constrained by any frequency
ranges. A drawback can be that the resulting integrals can be difficult
to solve, too. Another interesting difference is found in the signal re-
construction or decomposition. Inserting the parameter estimate into the
model function,

(] A(Opt)’ m(opt))’

is not the same as the Bayesian result (45). The integral takes into
account all available information, e.g. skewness, asymmetry or
multi-modality of the likelihood (acting as a ‘loss function’ in the above
sense). This also allows to quantify the uncertainties of the signal
(source) estimate (47) on the same probabilistic footing too, in contrast
to point estimates resulting from optimization. Finally, we do not need
ad-hoc procedures or diagnostics to prevent over-fitting in the model se-
lection. This is inherently taken care of by the method, as discussed in
Section 3.4.

7. Conclusion

In this paper, the decomposition of the measured EBI signals into
their components, pulsatile and respiratory part, was derived within the
framework of Bayesian probability theory. This allows a consistent treat-
ment of the experimental uncertainties and to include physiological or
medical prior knowledge about the various quantities such as the nat-
ural frequency range of the periodic signal parts. Moreover and on the
same footings, the probabilistic approach allows to separate the signal
of interest from disturbing influences from other sources that may lead
to long term trends, and to infer the uncertainties of the recovered sig-
nal and its components. The formalism was tested with artificial data
and also with data from real EBI measurements. It was shown, that it
allows for an efficient decomposition of the signal into its components
without filters and without data or information from further measure-
ments. Due to the rather large number of data points N within the con-
sidered time window as compared to the number of unknown model pa-
rameters, the uncertainty bands of the estimated signal and of all the
components are usually quite narrow. Thus, the estimated signals and
components are reliable for the typical EBI data sets. Even in the case
of very poor data, where nothing is recognizable to the naked eye, the



12 C. Pichler et al. / Biomedical Signal Processing and Control xxx (xxxx) 102541

signal and its pulsatile component can be recovered with a reasonable
uncertainty. The time window was chosen such that only a few heart
beats are included to allow for a fast reconstruction and to avoid un-
necessary uncertainties due to changes in the frequency of pulsatile and
respiratory part. By shifting this time window over the time series of
the measured data, one can monitor changes of these frequencies. Since
the EBI signals used were measured on sedated persons, motion artifacts
were not considered in this work.

The ongoing research pursues two aspects, robustness against all
kinds of artifacts and the combined treatment of data from multiple elec-
trode pairs. The method can be adapted for other biomedical signals
such as electrocardiogram (ECG) or electroencephalography (EEG).
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Appendix A. Proof of Egs. (36) and (37)
Here we prove Egs. (36) and (37). We begin with the expression for

the mean of the amplitudes. For simplicity, we suppress the argument m
in the conditional complex

A = /dVA AppA|o.d]). (56)

Next we use (35) and obtain

Ao = / do (Ay)g . p(o | @,d.1) -
with
oo :/dVA A pA|d,@0,1). 8)

For the last pdf we use Bayes’ theorem

PAldo0.]) = 2p@| 4,0.0.1) p(d | 0.0,

As argued before in (52) or (28),we can replace A in the prior with
A = h, i.e. with the peak position in the likelihood. That makes the prior
a constant with respect to A, so we actually have

1
pAdld,eocl)= gp(dlA,(o,ml)-

From (21), (13), and (17) we obtain that the likelihood in terms of A
is a Gaussian, centered at 4 = j, = g7q4 and with a diagonal covariance

(A A4L), o = Bia0”, (59)
and (Ax)w,s = hi. Along with the proper normalization, we have

P | d,@,0,1) = 27)" 36" exp (—2}7(A - h)z) .

Then (57) leads to

Ay = /do‘ (Ap) oo | @,.d,1) = hy. (60)
Similarly, we obtain

(A4, A4;1),, = /da (A AAY) o P(0 | @,d,1). 61)

With (59) for the conditional covariance, we finally find the desired re-
sult

(A4 A4 ) o = a0 <52>w- (62)
Along with (33) we can replace the last expression by

(DALY = 81005 63)

Appendix B. Second moment of the signal

Here we outline the evaluation of the second moment of the signal.
According to (41), i.e.

()= [ Wop@lan (car),. (64)

we need the conditional second moment ((HA)?) »+ Due to the Gaussian
form of p(4 |5, ®.d,I) specified in (43) with mean (A), = h and co-
variance (A4;Ady), = &y 330 we obtain
2
<(HA>,- >m = Yy HuHy(AAr),
Y HiHy ((A)u(Ap), + (AAAAY),) (65)
2 A2

(HA), +6,(HHT),.

ii

Insertion into (64) yields



C. Pichler et al. / Biomedical Signal Processing and Control xxx (xxxx) 102541 13

= / dV, [} +5, (HHT), | p@ | d.D). (66)

The squared uncertainty, denoted by (Af)>?, is defined as
@ = () -’ 67)
Then along with (44) and (45) we obtain
Af)? = [dVeple]dl)
<[([(mA), - ((1a) ), )Y + (i) 33]. O

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.bspc.2021.102541.
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