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Abstract - Aortic dissection is a severe cardiovascular disease 
caused by the occurrence of a tear in the aortic wall. As a result, 
the blood penetrates the wall and makes a new blood channel 
called the false lumen. The haemodynamic conditions in the false 
lumen may contribute to the formation of thrombi, which 
influence the patient's diagnosis and outcomes. In this study, the 
focus is on a haemodynamic-based model of thrombus 
formation. Since the model construction entails uncertainties in 
the model parameters, a variance-based sensitivity analysis is 
performed. Thrombus formation at a backward-facing step is 
considered as a benchmark for the numerical simulations and 
sensitivity analysis. This geometry is capable of representing the 
main contributions of the model in thrombus formation. The 
study aims at improving the understanding of the model's 
structure and at preparing model simplifications to enable 
efficient patient-specific simulations in the future. A polynomial 
chaos expansion is employed as a surrogate model, from which 
the quantitative sensitivity indices are derived. In this study, nine 
model parameters are selected, whose proper values are not 
well known. The model responses taken into account are the 
maximum volume fraction of thrombus, its time development, 
and the thrombus growth rate. The results show that the model 
lends itself to model reduction since some of the model 
parameters show little to no influence on the model's outputs. A 
threshold value related to the concentration of bounded 
platelets and the bounded platelets reaction rate are identified 
as the key input parameters dominating the thrombus model 
predictions in the current geometry. Furthermore, the 
introduced thrombus characteristic growth time is driven by 
both the aforementioned variables. 
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Nomenclature 

 
Symbol                      Description 
Thrombus formation model 

𝑇R Residence time, s 
𝑇Rt Residence time threshold, s 
𝐷TR

 Diffusion coefficient, m2s−1 

𝑐i Concentration of resting or activated 
platelets, m−3 

RP Resting platelets, m−3 
AP Activated platelets, m−3 
𝐷P Diffusion coefficient of platelets, m2s−1 
𝑠𝑖 Reaction term for platelets conversion, 

m−3s−1 
𝑐 Coagulant concentration, mol m−3 
𝑐t Coagulant concentration threshold, 

mol m−3 
𝐷ceff

 Effective coagulant diffusivity, m2s−1 

𝑘c Coagulant kinetic constant, 
mol m−3s−1 

𝑘th Constant coefficient in N-S equation 
sink term, kgm−3𝑠−1 

𝑐BP Concentration of bounded platelets, 
mol m−3 
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𝑐BPt Concentration of bounded platelets 
threshold, mol m−3 

𝑐BPbt Bounded platelets concentration 
threshold at the wall, mol m−3 

𝑘c,wall Coagulant kinetic constant at the wall, 
mol m−2s−1 

𝐷c Coagulant diffusivity, m2s−1   
𝑘BP Bounded platelets reaction rate, 

mol m−3𝑠−1 
𝑐AP Concentration of activated 

platelets, m−3 
𝑡c Characteristic growth time, s 
Φ̇𝑐  Characteristic growth rate, m3𝑠−1 

Fluid mechanics 

𝒖 Velocity vector, ms−1 
�̇� Shear rate, s−1 
�̇�t Shear rate threshold, s−1 
𝜌 Blood density, kgm−3 
𝜇 Blood viscosity, m2s−1 
𝑝 Fluid pressure, Pa 
𝝉 Extra stress tensor, Pa 

𝑅L Reattachment length, m 
Model geometry 

𝑆 Step depth, m 
𝐻 Inlet height, m 
𝐿 Total length, m 
𝑉 Domain volume, m3 

Sensitivity analysis 

𝑌 Quantity of interest 
𝑓 Computational model 
𝒙 Input random vector 
𝑥i Input random variable 
𝑛 Model dimension 

𝔼[∙] Mean operator 
𝕍[∙] Variance operator 
𝑆i First-order sensitivity index 
𝑆i

T Total-order sensitivity index 

𝑓PCE Polynomial chaos expansion function 
𝑦α Expansion coefficient 

𝚿α  Multivariate polynomial 
α Multi-indices of polynomial expansion 
𝐴 Set of multi-indices 
𝑁s Number of samples 

 

1. Introduction 
Aortic dissection (AD) is a disease that develops a 

second volume, called false lumen (FL), in the aorta. AD 
is classified as type A when it initiates in the ascending 
thoracic aorta, type B when the initial tear in the aortic 

wall is in the descending thoracic aorta (Stanford 
Classification System). Type B aortic dissection (TBAD) 
is a severe disease associated with high mortality, which 
may also lead to complications such as aortic aneurysm, 
rupture or malperfusion syndromes [1]. In the current 
study, the focus is on TBAD and the role of thrombosis in 
the false lumen. 

The haemodynamic conditions in the FL, including 
flow disturbance, recirculations, and significant 
variability in the wall shear stress (WSS) presumably 
promote the formation and growth of thrombi [2]. In [3], 
it is shown that partial thrombosis is associated with a 
higher mortality rate, whereas complete thrombosis of 
the FL improves patients' prognosis [4], [5]. Up to now, 
it is not entirely clear what circumstances favour 
thrombosis following aortic dissection. Thrombus 
formation models may play a vital role in the analysis of 
haemodynamics in cardiovascular environments. 

In [2] and [6], a haemodynamic-based model 
capable of predicting false lumen thrombosis in TBAD is 
developed. However, because the model is mostly 
phenomenological, the parameters of the model may not 
be determined from chemical or biological 
characteristics of the blood. Instead, the parameters will 
usually be obtained from inverse modelling, i.e. fitting to 
measured data. However, suitable time-resolved data of 
thrombus-formation is very sparse, which is why it is of 
vital importance to narrow down the number of model 
parameters. A global sensitivity analysis is suggested to 
understand the influence of the parameters [7]. 

The model performs well in predicting the location 
of thrombus formation; however, it is unable to 
reproduce the growth rate as observed in in-vivo and in-
vitro studies. More insight into the model parameters 
and their role in thrombus growth is needed to bridge 
the gap between numerical simulations and real-life 
studies. This paper identifies the most critical 
parameters for the thrombus growth model, and further 
analysis of the thrombus characteristic growth time 
indicates the parameters that could accelerate or inhibit 
the process of thrombus formation. 

The paper is structured as follows: the thrombus 
formation model is exposed in Section 2, the theory of 
sensitivity analysis is explained in Section 3, while its 
application to the computational model is in Section 3.2. 
Results of the analysis and the conclusions are exposed 
in Sections 4 and 5, respectively. 
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2. Thrombus Formation and Growth 
In this study, the thrombus formation model 

developed in [2] is used. It is a haemodynamic-based 
model in which the thrombus forms and grows mainly in 
areas where low shear stress and high residence time are 
measured. The model consists of the following 
equations, which are coupled with Navier-Stokes 
equations. The residence time 𝑇𝑅 is a field quantity, 
which obeys the following evolution law, 

 
𝜕𝑇R

𝜕𝑡
+ 𝒖 ∙ 𝜵𝑇R =  𝐷TR

𝜵2𝑇R + 1, (1) 

 
where 𝒖 denotes the velocity vector, and 𝐷TR

 is a 

diffusion coefficient. High 𝑇𝑅 marks areas where 
platelets spend more time [2]. The transport equation for 
the concentration 𝑐𝑖 of resting or activated platelets (RP 
or AP, resp.) is 

 
𝜕𝑐𝑖

𝜕𝑡
+ 𝒖 ∙ 𝜵𝑐𝑖 =  𝐷P𝜵2𝑐𝑖 + 𝑠𝑖,   𝑖 = RP, AP. (2) 

 
Here, 𝐷P denotes the diffusion coefficient of 

platelets, which is the same for resting and activated 
platelets. Furthermore, 𝑠𝑖 denote reaction terms for the 
conversion of resting to activated platelets [2]. 

The so-called coagulant concentration 𝑐 accounts 
for the lumped effect of all underlying biochemical 
reactions in the coagulation cascade [2]. In low shear 
rate areas, there is a production of coagulant at the wall 
based on the conditions specified on the boundary, 
compare Eq. (5). This modified boundary condition for 
the flux of coagulant is taken from [6] for the backwards-
facing step. The diffusion-reaction equation for the 
coagulant is 

 
𝜕𝑐

𝜕𝑡
=  𝐷ceff

𝜵2𝑐 + 𝑘c𝜙th𝜙γ̇ , (3) 

 
where 𝑘c is the coagulant kinetic constant,  �̇� is the shear 
rate. Furthermore, 

 
𝜙γ̇ = �̇�t

2/(�̇�2 + �̇�t
2), (4) 

 
where the subscript t denotes the threshold values, and 

 

𝐷ceff

𝜕𝑐

𝜕𝑛
|

wall
= {

0, if �̇� > 1 𝑠−1, 𝑐BP > 200 nM
𝑘c,wall, else.

, (5) 

 

The effective coagulant diffusivity 𝐷ceff
 is 

proportional to the coagulant diffusivity 𝐷c, 
 

𝐷ceff
= 𝜙γ̇𝐷c. (6) 
Finally, the rate of production of bounded platelets 

concentration 𝑐BP is given by 
 

𝜕𝑐BP

𝜕𝑡
= 𝑘BP𝜙BP𝜙γ̇𝑐AP, (7) 

 
where 

 

𝜙BP = (
𝑐2

𝑐2 + 𝑐t
2) (

𝑇R
2

𝑇R
2 + 𝑇Rt

2 ). (8) 

 
Here, 𝑘BP denotes the bounded platelets reaction 

rate and 𝑐AP is the activated platelets concentration. The 
Navier-Stokes equation is modified to incorporate the 
thrombus growth [2] 

 

𝜌 [
𝜕𝑢

𝜕𝑡
+ (𝒖 ∙ 𝜵)𝒖] = −𝜵𝑝 + 𝜵 ∙ 𝝉 − 𝑘th𝜙th𝒖, (9) 

 
where 𝜌 denotes the blood density, 𝑝 the pressure, 𝝉 is 
the extra stress tensor, and 

 

𝜙th(𝑐BP, 𝑐BPt) =
𝑐BP

2

𝑐BP
2 + 𝑐BPt

2 . (10) 

 
The quantity 𝜙th indicates local thrombosis as a 

function of the bounded-platelets concentration 𝑐BP and 
its threshold 𝑐BPt. Furthermore, 𝑘th is a coefficient with 
a sufficiently high value to stop the flow where the 
thrombus is formed [2]. In summary, the model controls 
the formation of thrombus based on shear stress, 
residence time, the concentration of coagulant and 
platelets.  

  

3. Numerical Simulations 
OpenFOAM software is used for solving the blood 

flow and thrombus formation equations. The blockMesh 
utility in OpenFOAM is used for generating a structured 
hexahedral mesh. Blood is modelled as a Newtonian 
fluid. The geometry is characterised by a step depth (𝑆) 
of 2.5 mm, inlet height (𝐻) of 7.5 mm and a total length 
(𝐿) of 120 mm. 
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3. 1. Initial and Boundary Conditions 
For the inlet boundary condition of the velocity, a 

uniform velocity profile resulting in Reynolds number of 
490 was imposed, with the no-slip condition for the 
walls. The pressure gradient is equal to zero on all the 
boundaries except the outlet, which is considered having 
a fixed value of zero. 

As discussed in sections 2, there are five equations 
to be solved for the thrombus formation model. For 
solving residence time 𝑇R equation (Eq. 1), which is 
initially zero, the inlet value of 𝑇R is fixed to zero, and the 
normal gradient on all the other boundaries is set to zero. 

Initial values of resting platelets RP and activated 
platelets AP in the blood are taken from [2]. The inlet 
values of RP and AP (Eq. 2) are fixed to their initial 
values. Zero normal gradients of AP and RP is imposed 
on all the other boundaries. For the coagulant equation 
(Eq. 3), the Neumann boundary condition discussed in 
section 2 is implemented for the walls, while a zero fixed 
value at the inlet and a zero normal gradient at the outlet 
are applied. Bounded platelets equation (Eq. 7) is solved 
with zero initial concentration of bounded platelets. 

 
3. 2. Backward-facing step benchmark 

The thrombus formation simulation starts at 12 
seconds from the steady-state flow solution. A Reynolds 
number of 490 is chosen to be consistent with in-vitro 
results in [8] and numerical simulations in [9]. To test 
the performance of numerical simulations, the 
reattachment length 𝑅L at the back of the step for four 
Reynolds numbers is compared to the numerical results 
of [10]. For this comparison, the expansion ratio of 1 +
𝑆/𝐻 = 2 is adopted [10]. The Reynolds number 𝑅𝑒 is 
computed as 

 

𝑅𝑒 =
𝜌𝑈𝐷ℎ

𝜇
 

(11) 

 
where 𝑈 is inlet velocity, 𝐷h is the hydraulic diameter 
and equal to 2𝐻 [10], 𝜌 = 1060 kg/m3 is the blood 
density, and blood viscosity 𝜇 = 4.7 × 10−3 m2/s [9]. 

Figure 1 shows that the present results are in good 
agreement with the benchmark solutions [10]. Mesh and 
time-step sensitivity analysis resulted in 20,000 
elements and a time-step of 0.005s.  

 

 
Figure 1. Normalised reattachment length with respect to 

step height versus Reynolds numbers  

 
3. 3. Thrombus formation model 

 In Figure 2, the recirculation area behind the step 
is highlighted by the streamlines superposed on a 
density plot of the magnitude of the fluid velocity. The 
model predicts thrombus formation in the recirculation 
area behind the step which qualitatively matches with 
in-vitro results in [8] and numerical simulations in [9], 
see Figure 3.  

 

 
Figure 2. Streamlines and magnitude of velocity indicating 

recirculation at the back of the step. 
 

 
Figure 3. Evolution of thrombus in time at the back of the 

step. The thrombus has reached 16 mm length in 50 s. 
 

4. Sensitivity analysis 
Consider a quantity of interest 𝑌 of computational 

model 𝑓 function of an input random vector 𝒙 of 
dimension n, i.e. 𝑌 = 𝑓(𝒙) = 𝑓(𝑥1, 𝑥2, … , 𝑥n). One of the 
most widely used technique in global sensitivity analysis 
is the variance-based method, which quantifies the 
connection between the variance of the model output 𝑌, 
given the variability of its inputs 𝑥i. The sensitivity 
analysis may be employed for model reduction, in that 
the non-influential variables of a computational model 
may be considered constants. Furthermore, sensitivity 
analysis enables input factor prioritisation, by ranking 
the parameters, to which the outcome is most sensitive. 
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A random variable 𝑥i is considered to be influential 
(non-influential) to the model 𝑓 with output 𝑌 if the 

conditional variance 𝕍[𝔼[𝑌|𝑥i]] is larger (smaller) than 

the variance of the quantity of interest 𝕍[𝑌], where 𝕍[∙] 
and 𝔼[∙] represent the variance and the mean operators. 
The first-order sensitivity index (or first-Sobol index) is 
defined as [11] 

 

𝑆i =
𝕍[𝔼[𝑌|𝑥i]]

𝕍[𝑌]
. (12) 

 
The first-Sobol index represents the contribution 

of the random variable 𝑥i, for 1 ≤ i ≤ 𝑛, to the change of 
the model output 𝑌. 

The total-order sensitivity index (or total-Sobol 
index) is defined as 

 

𝑆i
T = 1 −

𝕍[𝔼[𝑌|𝑥~i]]

𝕍[𝑌]
=

𝔼[𝕍[𝑌|𝑥~i]]

𝕍[𝑌]
. (13) 

 
The total-Sobol index evaluates the total effect of 

an input parameter, by accounting for the conditional 
variance of the output, conditioning to all factors except 
the given one, 𝑥~i.  

The first-Sobol index identifies the level of 
influence of a single parameter on the output in the 
analysis, but it does not give information regarding the 
interaction of the parameter with other variables of the 
input space. It may be used for factor prioritisation, 
where a ranking of the parameters is produced. The rank 
indicates the level of influence on the model variation, 
and therefore it highlights the input uncertainty that 
needs to be removed. The total-order sensitivity index 
specifies the influence of the input parameter on the 
model output and the level of interaction with other 
input parameters. The total-order index is used for factor 
fixing. Here, the lower values are considered to decide 
which variable has no- or low-effect on the output. Such 
variables can be successively considered as model's 
constant. 

 
4. 1. Polynomial Chaos Expansion 

The Sobol indices are assessed from a polynomial 
chaos expansion (PCE) of the computational model [12].  

PCE consists of the sum of orthogonal, multivariate 
polynomials 𝛹α of increasing order up to some maximal 
polynomial order 𝑝 [13]. The polynomials are multiplied 
by expansion coefficients 𝑦α, which can be estimated 
with different methods. The expansion is written as 

 

𝑌(𝒙) ≈ 𝑓PCE(𝒙) = ∑ 𝑦α𝜳α(𝒙)

α∈𝐴

, (14) 

 
where 𝐴 is a set of multi-indices α which refer to the 
degree of each polynomial with respect to each input 
parameter. The multivariate polynomials 𝜳α are defined 
as the product of univariate polynomials of order αi, i.e. 
𝜓αi

. The univariate polynomials are generated following 

the Askey scheme [14] for the composition of 
polynomials. 

Finally, from the PCE, it is possible to estimate the 
two sensitivity indices as the ratio between the PCE 
coefficients [14]. Since the case study is dynamic, the 
variance of the output evolves in time. A pointwise-in-
time evaluation of sensitivity indices turns out to be 
inaccurate in describing such evolution. Therefore, an 
analysis that is aware of the history of the output 
variability is needed. The implementation of time-
dependent indices, known as generalised Sobol indices 
[15] reads 

 

𝑆i(𝑡) =
∫ 𝕍𝑖[𝑌(𝑥𝑖, 𝜏)]𝑑𝜏

t

0

∫ 𝕍[𝑌(𝒙, 𝜏)]𝑑𝜏
t

0

≈
∑ 𝑦α

2(𝑡)α∈Ai

∑ 𝑦α
2(𝑡)α∈Ai;α≠1

=
∫ ∑ 𝑦𝛼

2(𝜏)α∈Ai
𝑑𝜏

t

0

∫ ∑ 𝑦α
2(𝜏)α∈Ai;α≠1 𝑑𝜏

t

0

, 

 

(15) 

𝑆i
T(𝑡) ≈

∑ 𝑦α
2(𝑡)α∈Ai

T

∑ 𝑦α
2(𝑡)α∈Ai;α≠1

=
∫ ∑ 𝑦α

2(𝜏)α∈Ai
T 𝑑𝜏

t

0

∫ ∑ 𝑦α
2(𝜏)α∈Ai;α≠1 𝑑𝜏

𝑡

0

. 

(16) 

 
4. 2. Application to the thrombus formation model 

The input parameters that are considered to rep-
resent uncertainty are listed in Table 1. To adequately 
cover and understand the sensitivity of thrombus 
formation on the selected parameters, the volume 
fraction of thrombus, the thrombus growth rate, and a 
characteristic growth time  𝑡c  are considered as the 
quantities of interest. The volume fraction of thrombus 
expressed as a percentage is defined as 

 

�̅�th(𝑡) =
1

𝑉
∫ 𝜙th(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑉

V

∗ 100, (17) 

 



 36 

where 𝑉 is the domain volume and the thrombus growth 
rate (%/𝑠) as 
 

�̇̅�th(𝑡) =
𝑑

𝑑𝑡
(�̅�th(𝑡)). (18) 

 
It seems promising to introduce an indicator that 

describes the development of the thrombus in time. This 
indicator could improve model fitting to experimental 
data, the introduction of a time scale in thrombus 
growth, or both. A characteristic growth time 𝑡c is 
therefore introduced, which is defined by the maximum 
peak of the thrombus growth rate, thus the time after 
which the thrombus growth rate decreases significantly. 
At 𝑡c the thrombus formation is considered almost 
complete, and the thrombus is said to be developed, i.e. 
its volume will no longer change significantly in time. An 
example of  𝑡c identification is illustrated in Figure 4, 
where the growth rate of one typical simulation is 
plotted over the simulation time. The characteristic 
growth time 𝑡c is unique for each simulation. However, 
not all simulations reached a growth rate peak in the 
simulation time, preventing the assignment of the 
characteristic growth time. Such simulations were 
excluded from the sensitivity analysis.  

 

 
Figure 4. Example of thrombus growth rate in time. A black 

circle indicates the characteristic growth time 𝑡c. 

 
The developed thrombus and its characteristic 

growth time are directly connected. Acceleration or 
deceleration of the thrombus formation results in a 
variation of 𝑡c in the model. For an in-depth 
understanding of the growth characteristics, this 
relationship should be analysed in detail.  

Each model input factor is treated as a uniformly 
distributed random variable on a given interval, since 
their actual values, and distributions are not known, 

Table 1. The sample is produced with latin hypercube 
sampling techniques with size 𝑁s equal to 450. The 
number of simulations is bounded by the high 
computational cost of the model and fulfils the 
requirements for the construction of the PCE. The latter 
is solved with the regression LARS method through the 
Matlab toolbox UQlab [16], where the degree of the 
polynomial is set to 3. 

 

5. Results 
The sensitivity indices 𝑆i and 𝑆i

T for the maximum 
volume fraction of thrombus are listed in Table 2. By 
looking at the first column, one observes that the first-
order sensitivity indices do not sum up to one, which 
occurs in the presence of non-additive model behaviour. 
Circa 90% of the output variance can be attributed to 
𝑐BPt, 𝑘BP, and 𝑐AP. The bounded platelets threshold 𝑐BPt 
accounts alone, i.e. without considering interactions, for 
about 64% of the variation of the volume fraction of 
thrombus. By subtracting the first-order from the total-
order indices of Table 2, the interaction effect is 
estimated.  

 
Table 1. Input parameters of the thrombus model and their 

probabilistic distribution used for the sensitivity analysis. All 
input parameters follow a uniform probability distribution on 

the indicated interval. 

Parameters Name PDF parameters 

Activated platelets 
concentration 

𝑐AP  [1.00e-10, 1.00e-06] 

Coagulant 
diffusivity 

𝐷c   [2.00e+04, 2.00e+06] 

Coagulant kinetic 
constant 

𝑘c  [8.00e-11, 8.00e-09] 

Bounded platelets 
reaction rate 

𝑘BP  [1.00e+03, 1.00e+05] 

Coagulant 
concentration 
threshold 

𝑐t  [2.00e+03, 2.00e+05] 

Bounded platelets 
concentration 
threshold 

𝑐BPt [1.00e-01, 3.00e+00] 

Coagulant kinetic 
constant at the wall 

𝑘c,wall [1.00e+02, 1.00e+05] 

Residence time 
threshold 

𝑇Rt  
[0.750e+13, 
2.25e+13] 

Bounded platelets 
concentration 
threshold at the 
wall 

𝑐BPbt  [1.00e+02, 2.50e+05] 
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Since the thrombus develops in time, it is essential 
to understand how the variation of its development 
evolves in time. The results show several trends (Figures 
5 and 6). Increasing variability in time is visible, 
especially towards the end of the simulation time. In 
Figure 5, at 50 s of simulation time, the distribution of the 
recorded maximum volume fraction of thrombus varies 
from the absence of thrombus to a thrombus coverage of 
circa 30% of the volume domain. Such variability is 
critical for a model in which the computation of the 
thrombus volume is an important goal. 

The results of the generalised total-Sobol indices 
for the volume fraction of thrombus and the thrombus 
growth rate are shown in Figure 7. The sensitivity 
analysis results do not differ for the two quantities of 
interest (Eq.17 and 18); therefore, only one plot is 
shown. Furthermore, the first-Sobol index does not 
display a trend that differs from the total-Sobol index, 
suggesting a low degree of interactions between the 
input random variables [17]. In Figure 7, the sensitivity 
analysis in time of volume fraction of thrombus and 
thrombus growth rate shows the significant influence of 
the bounded platelets concentration threshold 𝑐BPt. 
Besides this, only the bounded platelets reaction rate 𝑘BP 
shows a comparably strong effect on the volume fraction 
of thrombus.  

The other input random variables mostly have a 
small or negligible effect on the output and might be 
considered as model constants. The only exception is the 
significant role of the residence time threshold 𝑇Rt in the 
early stage of thrombus initiation. 

 
Table 2: Sobol indices of the input random variables on the 

maximum volume fraction of thrombosis. 

𝑥i  𝑆i 𝑆i
T 𝑆i

T − 𝑆i 

𝑐BPt  0.638 0.730 0.093 

𝑘BP  0.198 0.277 0.078 

𝑐AP  0.043 0.060 0.017 

𝐷c  0.012 0.017 0.004 

𝑇R  0.007 0.014 0.007 

𝑘c,wall  0.001 0.008 0.007 

𝑐BPbt  0.000 0.005 0.004 

𝑐t  0.000 0.005 0.005 

𝐾c  0.000 0.001 0.001 

Total 0.900 1.117 0.218 

 
However, this parameter is mostly responsible for 

sparking off the formation of the thrombus, while its 
effect on the final thrombus size is also negligible. The 

influence of the coagulant diffusivity 𝐷c shows a small 
peak right after the first formation of the thrombus, but 
remains low throughout the simulation time.  

As may be read from Eq. 7 and Eq. 8, bounded 
platelets are generated from activated platelets in areas 
with low shear rate, high residence time and high 
concentration of coagulant. The bounded platelets can 
stop the flow if their concentration is sufficiently higher 
than the threshold value, 𝑐BPt. Any variation of the 
bounded platelets concentration threshold will 
significantly change the process of thrombus formation, 
i.e. it essentially controls where and how fast the 
thrombus can form. Moreover, the reaction rate 𝑘BP 
determines how fast the concentration of bounded 
platelets may reach the threshold value 𝑐BPt.  

 

 
Figure 5. Volume fraction of thrombus. The continuous line 

shows the mean value; the dashed line represents the 2 
standard deviations of the data. 

 

 
Figure 6. Thrombus growth rate in time. The central 

continuous black line identifies the median value; the grey 
area represents the interquartile range; the dotted lines are 

the maximum and minimum data points. 

 
The interconnected roles of the two parameters 

𝑘BP and 𝑐BPt on thrombus formation advocate the idea 
that there might be a correlation between these 
parameters and a characteristic time of the thrombus 
formation process. To verify if the characteristic growth 
time 𝑡c is the right candidate for characterising the 
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thrombus growth rate, a sensitivity analysis is also 
performed for this quantity of interest. 

The sensitivity analysis results for the 
characteristic growth time 𝑡c of the thrombus are shown 
in Figure 8. Here, the sensitivity indices are shown in a 
bar plot, where the first- and total-Sobol indices are 
shown side-by-side to highlight the presence of potential 
interactions, given by their difference in value. The main 
parameters affecting the shift in 𝑡c are again the bounded 
platelets concentration threshold 𝑐BPt and the bounded 
platelets reaction rate 𝑘BP. 

 

 
Figure 7. Generalised total-Sobol index for the volume 

fraction of thrombus �̅�th(𝑡). 
 

 
Figure 8. Sensitivity analysis results for the characteristic 

growth time of thrombus 𝑡c. 

 
From the results of the sensitivity analysis for 𝑡c 

(Figure 8), the characteristic growth time is a function of 
𝑐BPt and 𝑘BP. Because a high threshold 𝑐BPt delays 
thrombus growth, while a high reaction rate 𝑘BP has an 
accelerating effect, the ratio between them is introduced 
as a characteristic growth rate Φ̇c of the model, 

 

Φ̇c =
𝑘BP

𝑐BPt
, (18) 

 

with the dimension of a cubic meter per second (𝑚3/𝑠). 
Its relationship to the characteristic growth time 𝑡c is 
shown in Figure 9. Here, the data are produced with the 
computation of the metamodel for the characteristic 
growth time considering all input parameters, except for 
𝑐BPt and 𝑘BP, as constants. The data was fit with non-
linear regression. A low value of the characteristic 
growth rate  Φ̇c leads to high values of 𝑡c, that can be 
interpreted as a delayed thrombus growth. Such 
behaviour is a consequence of a low value of bounded 
platelets reaction rate 𝑘BP, and a high bounded platelets 
concentration threshold 𝑐BPt. In the case of high 𝑐BPt, the 
required number of bounded platelets to form a 
thrombus has to be higher, and therefore its growth is 
reduced.  

The data have been fitted by 
 

𝑡𝑐

𝑈

𝐻
 = 𝑎 (

Φ̇c

𝑄
)

𝑏

, (19) 

 
where 𝑈/𝐻 is the model convection time given by the 
ratio of inlet velocity magnitude 𝑈 and inlet height 𝐻, 
𝑄 = 𝑈 ∗ 𝐴 is the volumetric flow rate, where the area 𝐴 
is the product of inlet height 𝐻 and geometry depth 1 m. 
The constants 𝑎 and 𝑏 are computed by non-linear 
regression analysis. Their values, together with their 
95% confidence intervals, are: 𝑎 = 0.33 ± 2.21 ⋅ 10−2, 
and 𝑏 = −3.36 ⋅ 10−1 ± 2.80 ⋅ 10−3. The coefficient of 
determination 𝑅2 = 0.93. 

 

 
Figure 9. Variation of characteristic growth time of thrombus 

𝑡c normalised by convection time 𝑢/𝐻 as a function of the 

characteristic growth rate Φ̇c normalised by volumetric flow 
rate 𝑄. 

 
Such a formulation of the characteristic growth 

time of the thrombus appears as a promising tool for the 
modelling phase. By varying the characteristic growth 
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rate of the problem, it is possible to accelerate or inhibit 
the thrombus formation. 

 
6. Conclusions 

The thrombus formation model presents a high 
amount of variation due to the intrinsic uncertainty of 
the input parameters, which are usually collected from 
different literature sources. The input variation is 
modelled with uniform probability distributions for nine 
model input random variables, and a sensitivity analysis 
is performed through the construction of a polynomial 
chaos expansion metamodel. To better grasp the model 
variation for the scope of the study, the quantities of 
interest are considered to be the volume fraction of 
thrombus, the thrombus growth rate, and the time 
instant at which the growth rate peak is recorded, 
namely the characteristic growth time. 

Input parameters such as the bounded platelets 
reaction rate 𝑘BP and the bounded platelets 
concentration threshold of activated platelets 𝑐BPt, show 
high sensitivity indices, and therefore their proper 
determination requires further investigation. In general, 
the input parameters that include the platelet's 
mechanics control most of the process, except for the 
bounded platelets threshold at the boundary 𝑐BPbt. All 
the other input random variables, including the 
parameters relating to the coagulant, have little to no 
influence on the considered outputs, and therefore they 
could be switched to fixed values without altering the 
model response. 

The results of the sensitivity analysis for the model 
outputs show that the bounded platelets threshold 𝑐BPt 
exerts the most substantial influence. The reaction rate 
of bounded platelets 𝑘BP plays the second-largest role in 
the thrombus growth rate and the volume fraction of 
thrombus. 

Finally, the introduced characteristic growth rate 
𝑘BP/𝑐BPt appears to be a promising indicator for the 
speed of thrombus formation. This characteristic rate is 
supposed to be beneficial for fitting model results to 
experimental results, in-turn improving the 
haemodynamic-based model in predicting thrombus 
formation on a proper time scale. 
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