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Abstract. We propose a mechanical model to account for progressive damage in collagen

fibres within fibrous soft tissues. The model has a similar basis to the pseudoelastic model that

describes the Mullins effect in rubber but it also accounts for the effect of cross-links between

collagen fibres. We show that the model is able to capture experimental data obtained from rat

tail tendon fibres, and the combined effect of damage and collagen cross-links is illustrated for

a simple shear test. The proposed three-dimensional framework allows a straightforward imple-

mentation in finite element codes which are needed to analysemore complex boundary-value

problems for soft tissues under supra-physiological loading or tissues weakened by disease.
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1 Introduction

Fibrous soft tissues consist of distributions of collagen fibres which, for example, could be al-

most parallel, as is the case for tendons, dispersed, as for artery walls, or isotropic, as for the

middle zone of cartilage. These fibres are embedded in an essentially isotropic extrafibrillar ma-

trix consisting of elastic fibres (including elastin), proteoglycans, water, adhesion proteins, and

integrins,inter alia. Of particular interest are the mechanical properties of thecollagen fibres,

the main load bearing constituent of soft tissues, and theircontribution to the overall behaviour

of the tissues [1]. There are several constitutive models available that capture the distribution

of collagen fibres [2–5]. However, it is important to note that under certain supra-physiological

loads and in certain tissue diseases collagen starts to soften and finallyruptures, as shown by

the experimental data in Pins and Silver [6] on a single collagen fibre. But as yet such effects



on the microscale have not been incorporated in constitutive models. For soft biological tissues

a number of damage models are available, as described in the review article [7].For example,

the study [8] derives a fibre/fibril damage model based on failure once a critical tissue stretch

is reached. The proposed model reproduces the typical nonlinear behaviour of ligaments in-

cluding the toe and linear regions, then damage, and eventual failure. The computational work

[9] proposes a (rather complex) macroscopic tissue damage model by considering recruitment

stretches for the fibre content and failure of fibres in a distribution at different stretches or strain

energies. Decoupled damage mechanisms for the matrix and fibres are considered. On the basis

of [8] the constitutive model in [10] considers fibre recruitment and damage distributions by

using probability density functions. It also includes a constitutive model for unloading after

damage. The recent work [11] applies the constrained mixture theory of [12] to study the for-

mation/dilatation of abdominal aortic aneurysms. In particular, the constitutive model accounts

for continuous degradation and creation of collagen fibres (i.e. disappearance of old collagen

and appearance of new collagen).The purpose of the present paper is now to develop a basic

model at the collagen/cross-link microscale level that canaccount for these softening and failure

effects.

The influence of the concentration of collagenfibre cross-links on theanisotropicresponse

of fibrous soft tissuessuch as arterial wallswas first analysedwith a fully 3D model in[13].

However, that approach was solely based on the theory of hyperelasticity and no damage mech-

anism was included, which limits its applicability. Another aim of this paper is therefore to ac-

count for collagen fibre damage in the presence of undamaged cross-links which is the subject

of §2. The model has a similar structure to that of the pseudoelastic model of the Mullins effect

of rubber published in [14] but takes account of damage during loading rather than unloading.

In the present account this damage model is used to reproducethe experimental behaviour of

rat tail tendon fibres. In§3, with the inclusion of cross-links, we analyse the combined effect

of damage and cross-links in the simple shear of a single family of parallel fibres embedded in

an isotropic matrix. In particular, we demonstrate the influence of damage and the proportion

of cross-links on the shear stress versus the amount of shearresponse. This illustrates that fibre

damage leads to a softening behaviour and finally failure of the tissue. In§4 we provide con-

cluding remarks and point to the needs for further experimental data on the microscopic level to

inform the macroscopic tissue behaviour. This model approach can be implemented in a finite

element code to execute more realistic boundary-value problems, for which purpose we provide

the elasticity tensor in the appendix.
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2 Damage model considering cross-linking

2.1 Damage formulation

We start by introducing the deformation gradientF relative to a given reference configuration,

and the related right and left Cauchy–Green tensorsC = FTF andb = FFT, respectively. For

further use we define the isotropic invariantI1 and the pseudo-invariantI4 according to

I1 = trC, I4 = (CM) · M = λ2, (1)

whereM is the direction of aligned fibres in the stress-free reference configuration which are

embedded in an isotropic matrix, andλ is the fibre stretch. Now let us consider a fibre-reinforced

material such as a collagenous soft tissue, which is subjectto the incompressibility constraint

detF = 1, with the strain-energy function of the formΨ(I1, I4). The Cauchy stress tensorσ is

then given by [15]

σ = 2ψ1b + 2ψ4m ⊗ m − pI , (2)

wherep is a Lagrange multiplier, andm = FM is the fibre direction in the deformed configura-

tion. Here, for convenience, we have introduced the abbreviations

ψ1 =
∂Ψ

∂I1
, ψ4 =

∂Ψ

∂I4
. (3)

Now we consider the possibility of damage occurring when thestretchλ in the fibre exceeds

some critical value, sayλc. To model the damage effect we introduce a (dimensionless) damage

variableη, which is an additional independent variable so thatΨ(I1, I4, η). In the damage phase

the Cauchy stress is again given by (2) with the optimizationcondition

∂Ψ

∂η
= 0, (4)

which givesη implicitly in terms ofI1 andI4. Let I4c = λ2c be the critical value ofI4. We take

η = 1 wheneverI4 ≤ I4c, so (2) applies withΨ(I1, I4, 1) and (4) is not active. For definiteness,

we now take

Ψ(I1, I4, η) = Ψiso(I1) + ηΨfib(I4) + φ(η), (5)

analogously to the model of the Mullins effect [14], whereφ(η) is some measure of damage.

Then (2) gives

σ = 2ψib + 2ηψfm ⊗ m − pI , (6)

where we have introduced the abbreviations

ψi =
∂Ψiso

∂I1
, ψf =

∂Ψfib

∂I4
, (7)
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and with (5), the optimization condition (4) gives

φ′(η) = −Ψfib(I4), (8)

which determinesη in terms ofI4, i.e. damage is only related to the fibres. We require

φ(1) = 0, φ′(1) = −Ψfib(I4c). (9)

Note that if we use (4) to giveη = η(I4) and write, say,

Ψ(I4) = ηΨfib(I4) + φ(η), (10)

then by (8) we obtainΨ
′

= ηψf , whereψf is according to (7)2. This leads to an alternative

arrival at the second term on the right-hand side of (6).

A suitable choice ofφ′(η), which gives a decaying behaviour forη asI4 increases beyond

I4c and damage progresses, is

φ′(η) = m log η −Ψfib(I4c), (11)

and hence, by (8),

η = exp

(

−
Ψfib(I4)−Ψfib(I4c)

m

)

, (12)

wherem > 0 is a parameter with the same dimension asΨ. Figure 1 provides a schematic of

the damage parameterη as a function of the stretchλ. It shows thatη decreases from1 when

the stretchλ increases beyond the critical valueλc down to the valueηf whenλ reaches the

failure valueλf . This schematic is based on specific calculations ofη for uniaxial extension and

simple shear, which exhibit very similar behaviour.
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Figure 1: Damage parameterη versus stretchλ, with critical stretchλc and failure stretchλf .
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2.2 Uniaxial extension

Let λ be the stretch in the fibre directionM andσ the related uniaxial Cauchy stress. Then, the

components of (6) yield

σ = 2ψiλ
2 + 2ηλ2ψf − p, 0 = 2ψiλ

−1 − p, (13)

and hence, on elimination ofp,

σ = 2ψi(λ
2 − λ−1) + 2ηλ2ψf , (14)

whereψi andψf are defined in (7). Now choose

Ψiso =
µ

2
(I1 − 3), Ψfib =

k1
2k2

{

exp[k2(I4 − 1)2]− 1
}

, (15)

for the matrix and the fibre properties, respectively, whereµ andk1 are stress-like parameters,

while k2 is dimensionless. Hence, according to (7),2ψi = µ and2ψf = 2k1(I4−1) exp[k2(I4−

1)2] so that (12) gives

η = exp

[

−
k1

2mk2
{exp[k2(I4 − 1)2]− exp[k2(I4c − 1)2]}

]

, (16)

with I4 = λ2 andI4c = λ2c.

From (14) we then obtain

σ = µ(λ2 − λ−1) + 2k1λ
2(λ2 − 1) exp[k2(λ

2 − 1)2], (17)

when no damage occurs (λ ≤ λc), and

σ = µ(λ2 − λ−1) + 2ηk1λ
2(λ2 − 1) exp[k2(λ

2 − 1)2], (18)

with (16), whenλ ≥ λc.

The nominal stressP = σ/λ is plotted in figure 2 as a fit to the uniaxial test data from a

rat tail tendon fibre shown in [6], using the parameter valuesµ = 0, k1 = 115MPa,k2 = 7.7,

m = 6MPa, andλc = 1.05. Note that since we are modelling a single fibre here we emphasize

that there is no need to include the isotropic term.

From (11) and (9)1, we have

φ(η) = mη log η + (1− η)[m+Ψfib(I4c)], (19)

and from (12)

m log η = Ψfib(I4c)−Ψfib(I4). (20)

5



Stretchλ (-)

1.0 1.05 1.10 1.15
0

10

20

30

40

50

N
om

in
al

st
re

ss
P

(M
P

a)

Figure 2: Fit to experimental data from rat tail tendon fibre taken from [6], whereby the dots

represent the data extracted digitally from the curve in [6]. The solid curve shows the nominal

stressP = σ/λ versus stretchλ according to (18) withµ = 0 andk1 = 115MPa,k2 = 7.7,

m = 6MPa,λc = 1.05.

There is no energy loss forI4 ≤ I4c. Energy loss forI4 ≥ I4c is given by

Ψfib − [ηΨfib + φ(η)] = m(η − log η − 1) > 0 for η < 1. (21)

Although there are no data available for the unloading phaseit is worthwhile to illustrate

the stress softening affect induced byη during unloading prior to failure. For uniaxial extension

this is shown by the schematic in Fig. 3 with three unloading curves from different points on

the loading path. This parallels Fig. 2 with the nominal stress versus stretch.

2.3 Inclusion of collagen fibre cross-links

Let us use the unit vectorM , which identifies the collagen fibre direction in the reference con-

figuration, and introduceN, which is an arbitrary unit vector orthogonal toM . Now we consider

two families of cross-links around the collagen fibre direction M with the unit vectorsL+ and

L− which are rotationally symmetric aboutM and with the action ofF on them defined by

L± = ± cosα0M + sinα0N, FL± = ±c0FM + s0FN, (22)
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Figure 3: Schematic of the nominal stressP versus stretchλ during loading in uniaxial ex-

tension (continuous curve), with unloading curves (dashed) from three different points on the

loading curve prior to failure.
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Figure 4:(a) Parallel fibres in theM direction with two families of parallel cross-links described

by the vectorsL+ andL− making an angleα0 with M . (b) Detail of a pair of cross-links,

showing rotational symmetry about theM direction with the orthogonal vectorN; adopted from

[13].

whereα0 defines their orientation relative to the directionM ; see Fig. 4. For conciseness we

have writtens0 = sinα0 andc0 = cosα0.

The invariantI4 associated with the fibre direction is given in (1)2, and the invariantsI±,

which are the squares of the stretches in the cross-link directions, and the quantitiesI±8 describ-
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ing the coupling between the collagen fibres and cross-linksare defined by [13]

I± = c20I4 ± 2s0c0(CM) · N + s20(CN) · N, I±8 = ±c0I4 + s0(CM) · N. (23)

Note that, in general,I+ 6= I− andI+8 6= −I−8 .

From the derivatives ofI4, I
± and I±8 with respect to the right Cauchy–Green tensorC

given in [13] applied to a strain-energy functionΨ(I1, I4, I
+, I−, I+8 , I

−

8 ) we obtain the general

expression of the Cauchy stress tensor as

σ = −pI + 2ψ1b + 2ψ4FM ⊗ FM

+2ψ
I
+ [c20FM ⊗ FM + s0c0(FM ⊗ FN + FN ⊗ FM) + s20FN ⊗ FN]

+2ψI
−[c20FM ⊗ FM − s0c0(FM ⊗ FN + FN ⊗ FM) + s20FN ⊗ FN]

+ψ
8
+ [2c0FM ⊗ FM + s0(FM ⊗ FN + FN ⊗ FM)]

+ψ
8
− [−2c0FM ⊗ FM + s0(FM ⊗ FN + FN ⊗ FM)], (24)

as in [13], but with a slightly different notation, where we have used the abbreviations

ψI
± =

∂Ψ

∂I±
, ψ

8
± =

∂Ψ

∂I±8
(25)

in addition toψ1 andψ4 defined in (3).

Note that the second Piola–Kirchhoff stress, which is important for finite element imple-

mentations, here denoted byS, is related toσ by S= F−1
σF−T for an incompressible material.

Consequently, we can determine the total differential

dS= C :
1

2
dC, (26)

where the colon denotes the standard double contraction, and C is the elasticity tensor in the

material description required for finite element analysis.For a general explicit expression forC

we refer to the appendix.

2.3.1 Uniaxial extension with cross-linking

For uniaxial extension with stretchλ in the fibre direction we have

FM = λM , FN = λ−1/2N. (27)

Hence, with these two equations we can deduce from (22)2

FL± = ±c0λM + s0λ
−1/2N, (28)
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and (23) specializes to

I ≡ I± = c20λ
2 + s20λ

−1, I8 = I+8 = c0λ
2, I−8 = −I+8 . (29)

ThenψI = ψI
+ = ψI

−, ψ
8
+ = −ψ

8
− = ψ8, and (24) specializes to

σ = −pI + 2ψ1(λ
2M ⊗ M + λ−1N ⊗ N) + 2ψ4λ

2M ⊗ M

+4ψI(c
2
0λ

2M ⊗ M + s20λ
−1N ⊗ N) + 4ψ8c0λ

2M ⊗ M , (30)

the relevant components of which are

σ = −p + 2ψ1λ
2 + 2ψ4λ

2 + 4ψIc
2
0λ

2 + 4ψ8c0λ
2, (31)

0 = −p + 2ψ1λ
−1 + 4ψIs

2
0λ

−1. (32)

By eliminating the Lagrange multiplierp we obtain

σ = 2ψ1(λ
2 − λ−1) + 2ψ4λ

2 + 4ψI(c
2
0λ

2 − s20λ
−1) + 4ψ8c0λ

2. (33)

Now let us use the specific strain-energy functions (15) supplemented by quadratic energy

functions associated with the cross-links and fibre/cross-link interactions so that

Ψ =
1

2
µ(I1 − 3) + η

k1
2k2

{exp[k2(I4 − 1)2]− 1}+
1

2
ν(I − 1)2 +

1

2
κ(I8 − c0)

2, (34)

whereν andκ are parameters with dimension of stress associated with thecross-links and

interactions, respectively. In particular, a largerν corresponds to a larger density of cross-links,

whileκ is a measure of the interaction energy. Here we have adopted very simple models for the

energy in the cross-links and the interaction energy since there are no data available to justify

more sophisticated forms of energy. From (12) with (15)2, η is given by

η = exp

[

−
k1

2mk2

{

exp[k2(λ
2 − 1)2]− exp[k2(λ

2
c − 1)2]

}

]

. (35)

From (33) and (34), with the help of (3) and (25), the Cauchy stressσ then becomes

σ = µ(λ2 − λ−1) + 2k1ηλ
2(λ2 − 1) exp[k2(λ

2 − 1)2]

+4ν(I − 1)(c20λ
2 − s20λ

−1) + 4κ(I8 − c0)c0λ
2. (36)

The fit to the experimental data of [6] is of similar agreementto that shown in figure 2. Specific

parameters are, e.g.,k1 = 120MPa,ν = 15MPa,k2 = 6.4, m = 6MPa,α0 = π/4, λc = 1.02,

κ = 8MPa andµ = 0.
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3 Application to planar deformation of soft tissues

Next we consider the situation in which the collagen fibres and cross-links are restricted to the

(E1, E2) plane and we define byM the direction of the family of aligned fibres, and its normal

N as

M = cosαE1 + sinαE2, N = − sinαE1 + cosαE2, (37)

whereα is the angle between the fibre direction and theE1 axis (see figure 5). With respect

1
e

r
e

1
E

2
E

Fiber

direction

0α

α

0α

−
L

+
L

M
N

Figure 5:M represents the direction of a family of aligned fibres with unit normalN with respect

to background axesE1 andE2, andM makes an angleα with respect to theE1 direction. L±

represent the directions of two families of cross-links, and L± make an angleα0 with respect to

the±M direction (modified from [13]).

to M andN the cross-link directionsL± between members of the family and the action ofF

thereon are again given by (22). The invariantI4 = (CM) · M , as in (1)2, but with M now

defined by (37)1, while the invariantsI± and the quantitiesI±8 are again given by (23). The

Cauchy stress tensorσ has the same form (24) as in 3D but is now restricted to 2D.

3.1 Simple shear

For simple shear in theE1 direction in the considered plane, the deformation gradient is given

by F = I + γE1 ⊗ E2, whereγ is the amount of shear. It follows that

FM = M + γ sinαE1, FN = N + γ cosαE1. (38)
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The invariantI4 = (CM) · M is

I4 = 1 + γ sin 2α+ γ2 sin2 α, (39)

while the required expressions(CN) · N and(CM) · N are given by

(CN) · N = 1− γ sin 2α + γ2 cos2 α, (CM) · N = γ cos 2α + γ2 sinα cosα. (40)

On substitution of (40) into (23) we obtain

I± = 1 + γ sin 2(α± α0) + γ2 sin2(α± α0), (41)

I±8 = ±c0 + γ sin(α0 ± 2α) + γ2 sinα sin(α0 ± α). (42)

From (24) the components of the Cauchy stress can be obtained, but we only need here the

shear componentσ12, i.e.

σ12 = 2ψ1γ + 2[ψ4 + c20(ψI
+ + ψI

−) + c0(ψ8
+ − ψ

8
−)]s(c+ γs)

s0[2c0(ψI
+ − ψI

−) + ψ
8
+ + ψ

8
−](c2 − s2 + 2γsc)

+2s20(ψI
+ + ψI

−)c(γc− s) ≡
∂Ψ

∂γ
, (43)

where for conciseness we have writtens = sinα andc = cosα.

For illustrative purposes we now consider the model strain-energy function [13]

Ψ =
1

2
µ(I1 − 3) + η

k1
2k2

{exp[k2(I4 − 1)2]− 1}+
1

2
ν(I+ − 1)2 +

1

2
ν(I− − 1)2

+
1

2
κ(I+8 − c0)

2 +
1

2
κ(I−8 + c0)

2, (44)

which generalizes equation (34) to the case in whichI+ 6= I− andI+8 6= −I−8 . With (25) it

follows that

ψI
+ + ψI

− = 2νγ[2sc(c20 − s20) + γ(s20c
2 + s2c20)], (45)

ψI
+ − ψI

− = 4νγs0c0(c
2 − s2 + γsc), (46)

ψ
8
+ + ψ

8
− = 2κγs0(c

2 − s2 + γsc), (47)

ψ
8
+ − ψ

8
− = 2κγsc0(2c+ γs). (48)

In this case, from (12), we obtain, with the help of (15)2 and (39),

η = exp

[

−
k1

2mk2

{

exp[k2γ
2s2(γs+ 2c)2]− exp[k2γ

2
cs

2(γcs+ 2c)2]
}

]

, (49)

whereγc is the critical value ofγ at which damage is initiated.
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Figure 6: Plots of the dimensionless shear stressσ12 versus the amount of shearγ with and

without fibre damage (dashed and solid curves, respectively), with (ν̄ = ν/µ = 0.5, 2, κ̄ =

κ/µ = 0.6) and without (̄ν = κ̄ = 0) cross-links. Parameter values:k̄1 = k1/µ = 2, α = π/3,

k2 = 0.1, γc = 0.7,m/µ = 10, α0 = π/5.

Hence, from (43), we obtain with (3) and (45)–(48)

σ12 = µγ + 2ηk1 exp[k2γ
2s2(2c+ γs)2]s2(c+ γs)(2c+ γs)γ

+4νγ{2s2c2(c20 − s20)
2 + 2s20c

2
0(c

2 − s2)2

+3scγ[(c20 − s20)(c
2
0s

2 + s20c
2) + 2s20c

2
0(c

2 − s2)] + γ2[(c20s
2 + s20c

2)2 + 4s20c
2
0s

2c2]}

+2κγ{s20 + 4s2c2(c20 − s20) + 3scγ[(s20c
2 + s2c20 + s2(c20 − s20)] + 2γ2s2(s20c

2 + s2c20)}.

(50)

In figure 6 we plot the dimensionless shear stressσ̄12 = σ12/µ from (50) against the amount of

shearγ in order to illustrate the dependence on the various parameters. The specific parameter

values used arēk1 = k1/µ = 2, α = π/3, k2 = 0.1, γc = 0.7, m/µ = 10, α0 = π/5,

and ν̄ = ν/µ = 0.5, 2, κ̄ = κ/µ = 0.6. Without cross-links̄ν = κ̄ = 0. Clearly the shear

stress response stiffens with an increase in the cross-linkparameter̄ν without damage, while

when damage is included the shear stress is reduced after a critical value ofγ and can reach a

maximum asγ increases, as evidenced in the case when there are no cross-links. For the related

elasticity tensor of model (44), which is relatively simple, we refer to the appendix.
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4 Discussion and concluding remarks

This study proposes a simple mechanical model for the damageprogression of stretched col-

lagen fibres based on a pseudoelastic approach. The model is used to fit the limited data that

is available on the stretching of an individual collagen fibre, and the agreement with the data

is very satisfactory. The model has then been used for the construction of a constitutive model

for fibre-reinforced soft tissues in which the collagen fibres are supported by cross-links. The

predictions of the model have been illustrated by an application to a simple shear test in which

both damage and cross-links are accounted for. The related elasticity tensor is also provided

with a view to analyzing more complex boundary-value problems requiring a finite element

implementation.

To inform the further development of models that incorporate damage and cross-linking

more data are needed on the response and damage of stretched single fibres, their influence

on aggregates of collagen fibres embedded in tissues and alsothe mechanical properties of the

cross-links. It is well-known that the proportion of cross-links increases with age and causes a

stiffening of the tissue [16]. In addition, several studieshave shown that the stiffening of fibrous

tissues is related to the concentration of cross-links; see, e.g., [17, 18]. Such a relationship is

captured by our model.

The effect of proteoglycans is essentially incorporated into the isotropic part of the tissue

model partly because it is still unclear what their mechanical contribution is to the overall re-

sponse of the tissue. However, there is evidence that proteoglycans can support forces in the

piconewton range when stretched [19] but it is not clear if the level of stresses they can sup-

port is relevant for a constitutive model of the type proposed in this paper. The review article

by Scott [20] has described a mechanism between the collagenfibrils (as distinct from fibres)

governed mainly by proteoglycans which are essentially orthogonal to the fibrils (note that the

author calls this complex an ‘elastic shape module’). However, it seems that there is no quantifi-

cation yet available that shows how the force is transmittedbetween the individual fibrils. In the

present paper we focus on the collagen fibre level without accounting for the structure of fibrils

and proteoglycans. In addition, because of the orthogonal arrangement of the proteoglycans

with respect to the fibrils, see [21], the force transition would only be relevant for rather large

deformations. It is worth pointing out, however, that forcetransition between proteoglycans and

fibrils was accounted for in a mechanical model in [22], in which a collagen fibre is represented

as a bundle of collagen fibrils cross-linked by proteoglycans.

More advanced multi-scale models are needed that capture the behaviours of the individual

constituents such as proteoglycans, cross-linking proteins and their interaction with collagen
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molecules, fibrils and fibres and their aggregated contributions to the tissue. There is hope

that current imaging modalities will allow a better understanding of the structure down to the

nanoscale, but there is also a need for mechanical information at the same level. In order to

tackle organ level simulations the proposed model allows for a straightforward implementation

within the finite element method, which is a powerful tool foranalyzing more clinically relevant

problems in health and disease.
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Appendix

Here we explicitly present the elasticity tensorC in the material description which is defined by

C = 4
∂2Ψ

∂C∂C
. (51)

Consider an energy function of the formΨ(I1, I4, I
±, I±8 , η), where the four invariants are de-

fined according to (1) and (23),η = η(I4) is a damage variable accommodating damage only in

the fibres, which is not specified explicitly at this point, and whereI4 is the square of the stretch

in the fibre direction. Then the derivatives of the invariants andη with respect toC are

∂I1
∂C

= I ,
∂I4
∂C

= AM,
∂I±

∂C
= c20AM ± 2s0c0AMN + s20AN,

∂I±8
∂C

= ±c0AM + s0AMN,

and
∂η

∂C
= η′(I4)AM,

where we have introduced the notations

AM = M ⊗ M , AMN =
1

2
(M ⊗ N + N ⊗ M) = ANM, AN = N ⊗ N.
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It follows that

∂Ψ

∂C
= ψ1I + [ψ4 + c20(ψI

+ + ψI
−) + c0(ψI

+

8
− ψI

−

8
) + ψηη

′]AM

+[2s0c0(ψI
+ − ψI

−) + s0(ψI
+

8
+ ψI

−

8
)]AMN + s20(ψI

+ + ψI
−)AN,

where we have used the abbreviations (3), (25) andψη = ∂Ψ/∂η. Then, we can write

∂2Ψ

∂C∂C
= a1I ⊗ I + a2(I ⊗ AM + AM ⊗ I) + a3AM ⊗ AM + a4(I ⊗ AN + AN ⊗ I)

+a5(I ⊗ AMN + AMN ⊗ I) + a6(AM ⊗ AN + AN ⊗ AM) + a7AN ⊗ AN

+a8(AM ⊗ AMN + AMN ⊗ AM) + a9(AN ⊗ AMN + AMN ⊗ AN) + a10AMN ⊗ AMN,

where

a1 = ψ11, a2 = ψ14 + ψ1ηη
′ + c20(ψ1I

+ + ψ
1I

−) + c0(ψ1I
+

8
− ψ

1I
−

8
),

a3 = ψ44 + 2ψ4ηη
′ + ψηηη

′2 + ψηη
′′ + 2c20[ψ4I

+ + ψ
4I

− + η′(ψ
ηI

+ + ψ
ηI

−)]

+2c0[ψ4I
+

8
− ψ

4I
−

8
+ η′(ψηI

+

8
− ψηI

−

8
)] + c40(ψI

+
I
+ + ψI

−
I
− + 2ψI

+
I
−)

+c20(ψI
+

8 I
+

8
+ ψI

−

8 I
−

8
− 2ψI

+

8 I
−

8
) + 2c30(ψI

+
I
+

8
− ψI

+
I
−

8
+ ψI

−
I
+

8
− ψI

−
I
−

8
),

a4 = s20(ψ1I
+ + ψ

1I
−), a5 = 2s0c0(ψ1I

+ − ψ
1I

−) + s0(ψ1I
+

8
+ ψ

1I
−

8
),

a6 = s20[ψ4I
+ + ψ

4I
− + η′(ψ

ηI
+ + ψ

ηI
−)] + s20c

2
0(ψI

+
I
+ + ψ

I
−
I
− + 2ψ

I
+
I
−)

s20c0(ψI
+
I
+

8
− ψ

I
+
I
−

8
+ ψ

I
−
I
+

8
− ψ

I
−
I
−

8
),

a7 = s40(ψI
+
I
+ + ψI

−
I
− + 2ψI

+
I
−),

a8 = 2s0c0[ψ4I
+ − ψ

4I
− + η′(ψηI

+ − ψηI
−)] + s0[ψ4I

+

8
+ ψ

4I
−

8
+ η′(ψηI

+

8
+ ψηI

−

8
)]

+2s0c
3
0(ψI

+
I
+ − ψI

−
I
−) + s0c0(ψI

+

8 I
+

8
− ψI

−

8 I
−

8
)

+s0c
2
0(3ψI

+
I
+

8
− ψ

I
+
I
−

8
− ψ

I
−
I
+

8
+ 3ψ

I
−
I
−

8
),

a9 = 2s30c0(ψI
+
I
+ − ψ

I
−
I
−) + s30(ψI

+
I
+

8
+ ψ

I
+
I
−

8
+ ψ

I
−
I
+

8
+ ψ

I
−
I
−

8
),

a10 = 4s20c
2
0(ψI

+
I
+ + ψI

−
I
− − 2ψI

+
I
−) + s20(ψI

+

8 I
+

8
+ ψI

−

8 I
−

8
+ 2ψI

+

8 I
−

8
)

+4s20c0(ψI
+
I
+

8
+ ψI

+
I
−

8
− ψI

−
I
+

8
− ψI

−
I
−

8
).

For notational simplicity the subscripts1, 4, 8+ and 8− on ψ stand forI1, I4, I
+
8 and I−8 ,

respectively, and we have introduced the abbreviationψ•⋆ = ∂2Ψ/∂(•)∂(⋆). Note that in the

expression fora2 in eq. (78) of [13] the sign beforeψ
1I

−

8
was incorrectly written as+.

For the model (44) these expressions simplify considerably, giving

a1 = a2 = a4 = a5 = a8 = a9 = 0,

a3 = η(ψff − ψ2
f /m) + 2νc40 + 2κc20, a6 = 2νs20c

2
0, a7 = 2νs40, a10 = 8νs20c

2
0 + 2κs20,

whereψf is defined according to (7)2 andψff = ∂2Ψfib/∂I
2
4 . Note that the explicit expressions

for η andΨfib are provided in (12) and (15)2, respectively.
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