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Abstract. We propose a mechanical model to account for progressivagenm collagen
fibres within fibrous soft tissues. The model has a similaidiasthe pseudoelastic model that
describes the Mullins effect in rubber but it also accountdlie effect of cross-links between
collagen fibres. We show that the model is able to capturerarpatal data obtained from rat
tail tendon fibres, and the combined effect of damage andgefi cross-links is illustrated for
a simple shear test. The proposed three-dimensional frarke@llows a straightforward imple-
mentation in finite element codes which are needed to anatyse complex boundary-value
problems for soft tissues under supra-physiological logadir tissues weakened by disease.
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1 Introduction

Fibrous soft tissues consist of distributions of collagénefs which, for example, could be al-
most parallel, as is the case for tendons, dispersed, astéoy avalls, or isotropic, as for the
middle zone of cartilage. These fibres are embedded in antedBeisotropic extrafibrillar ma-
trix consisting of elastic fibres (including elastin), proglycans, water, adhesion proteins, and
integrins,inter alia. Of particular interest are the mechanical properties ottiikagen fibres,
the main load bearing constituent of soft tissues, and togitribution to the overall behaviour
of the tissues [1]. There are several constitutive modeddale that capture the distribution
of collagen fibres [2-5]. However, it is important to notetthader certain supra-physiological
loads and in certain tissue diseases collagen starts tensaifftd finallyruptures as shown by
the experimental data in Pins and Silver [6] on a single gelfefibre. But as yet such effects



on the microscale have not been incorporated in constimtiwdels. For soft biological tissues
a number of damage models are available, as described is\tlgwrarticle [7]. For example,
the study [8] derives a fibre/fibril damage model based omrfaibnce a critical tissue stretch
is reached. The proposed model reproduces the typicalnearlibehaviour of ligaments in-
cluding the toe and linear regions, then damage, and evdatluse. The computational work
[9] proposes a (rather complex) macroscopic tissue damagielnby considering recruitment
stretches for the fibre content and failure of fibres in a ithigtion at different stretches or strain
energies. Decoupled damage mechanisms for the matrix aed &ibe considered. On the basis
of [8] the constitutive model in [10] considers fibre recnuént and damage distributions by
using probability density functions. It also includes a stimtive model for unloading after
damage. The recent work [11] applies the constrained maxtugory of [12] to study the for-
mation/dilatation of abdominal aortic aneurysms. In gaitar, the constitutive model accounts
for continuous degradation and creation of collagen fibres (lisappearance of old collagen
and appearance of new collageihe purpose of the present paper is now to develop a basic
model at the collagen/cross-link microscale level thataxaount for these softening and failure
effects.

The influence of the concentration of collagére cross-links on th@nisotropiaesponse
of fibrous soft tissuesuch as arterial wallg/as first analyseavith a fully 3D model in[13].
However, that approach was solely based on the theory ofrblgsticity and no damage mech-
anism was included, which limits its applicability. Anotteem of this paper is therefore to ac-
count for collagen fibre damage in the presence of undamaged-tinks which is the subject
of §2. The model has a similar structure to that of the pseudietasdel of the Mullins effect
of rubber published in [14] but takes account of damage duoading rather than unloading.
In the present account this damage model is used to repradeaxperimental behaviour of
rat tail tendon fibres. 133, with the inclusion of cross-links, we analyse the comb@ia#fect
of damage and cross-links in the simple shear of a singldyashparallel fibores embedded in
an isotropic matrix. In particular, we demonstrate the irilce of damage and the proportion
of cross-links on the shear stress versus the amount of stsg@onse. This illustrates that fibre
damage leads to a softening behaviour and finally failurdeftissue. Ir§4 we provide con-
cluding remarks and point to the needs for further expertal@ata on the microscopic level to
inform the macroscopic tissue behaviour. This model apgr@an be implemented in a finite
element code to execute more realistic boundary-valudgmd) for which purpose we provide
the elasticity tensor in the appendix.



2 Damage model considering cross-linking

2.1 Damage formulation

We start by introducing the deformation gradi€éntelative to a given reference configuration,
and the related right and left Cauchy—Green ten€ors F'F andb = FF', respectively. For
further use we define the isotropic invaridptand the pseudo-invariait according to

I, =trC, I, =(CM)-M = )\°, (1)

whereM is the direction of aligned fibres in the stress-free refeeeconfiguration which are
embedded in an isotropic matrix, akds the fibre stretch. Now let us consider a fibre-reinforced
material such as a collagenous soft tissue, which is sutmebtie incompressibility constraint
detF = 1, with the strain-energy function of the forin(7,, I,). The Cauchy stress tenseris
then given by [15]

o =2b+2ymem-—npl, (2)
wherep is a Lagrange multiplier, aneh = FM is the fibre direction in the deformed configura-
tion. Here, for convenience, we have introduced the abatievis
ov ov
T A

Now we consider the possibility of damage occurring whersthetch) in the fibre exceeds

Py = (3)

some critical value, say,. To model the damage effect we introduce a (dimensionlesapde
variablen, which is an additional independent variable so that,, 7,, ). In the damage phase
the Cauchy stress is again given by (2) with the optimizatmmdition
ov
e =

which givesn implicitly in terms of I; andI,. Let . = \? be the critical value of ;. We take

0, (4)

n = 1 wheneverl, < I, so (2) applies withl'(1,, I,, 1) and (4) is not active. For definiteness,
we now take

W (I, Iy, m) = Vi (1) + 0P, (1) + ¢(n), (5)
analogously to the model of the Mullins effect [14], wherig)) is some measure of damage.
Then (2) gives

o = 2¢;b + 2mppm @ m — pl, (6)
where we have introduced the abbreviations
OV, OV
= — p— 7
¢1 all ) wf 814 ) ( )



and with (5), the optimization condition (4) gives

¢/(77) = —Vg,(1y), (8)

which determineg in terms of/,, i.e. damage is only related to the fibres. We require

¢(1) =0,  ¢'(1) = —Wgp(ls). 9)

Note that if we use (4) to give = n(I,) and write, say,

V(1) = nWa,(1y) + (1), (10)

then by (8) we obtaind’ = ¢, Wherev; is according to (7). This leads to an alternative
arrival at the second term on the right-hand side of (6).

A suitable choice of'(n), which gives a decaying behaviour fgrs I, increases beyond
I,. and damage progresses, is

¢/(77) = mlogﬁ - \Dﬁb(]4c)7 (11)

and hence, by (8),

1= exp <_ Wi (1s) — ‘I’ﬁb(]4c)) 7 (12)
m

wherem > 0 is a parameter with the same dimensionlasFigure 1 provides a schematic of

the damage parametgras a function of the stretch. It shows that) decreases from when

the stretch) increases beyond the critical valig down to the value); when \ reaches the

failure value);. This schematic is based on specific calculationgfor uniaxial extension and

simple shear, which exhibit very similar behaviour.
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Figure 1: Damage parameterersus stretchi, with critical stretch\, and failure stretch.



2.2 Uniaxial extension

Let \ be the stretch in the fibre directidh ando the related uniaxial Cauchy stress. Then, the
components of (6) yield

o= 20N+ 20\ —p,  0=20\"" —p, (13)
and hence, on elimination of
o = 205(N° — A7) + 20\, (14)
where; andy; are defined in (7). Now choose

k
o= 5(1h=3), W, = o {explka(l - 1)°) — 1}, (15)
2

for the matrix and the fibre properties, respectively, wheendk, are stress-like parameters,
while &, is dimensionless. Hence, according to (), = p and2uy; = 2k, (1, — 1) explko (1, —
1)%] so that (12) gives

k
1 = exp _2m1k2 {exp[k2(14 - 1)2] - exp[kQ(Llc - 1)2]} ) (16)
Wlth I4 — )\2 andI4C — )\(2:
From (14) we then obtain
0 = p(A = A7)+ 2 AN — 1) explhy (A — 1)), (17)

when no damage occurs € )\.), and
o = (A = A7) + 20k A (N — 1) explky (A = 1)7), (18)

with (16), when\ > ..

The nominal stres® = o/ is plotted in figure 2 as a fit to the uniaxial test data from a
rat tail tendon fibre shown in [6], using the parameter vajues 0, k;, = 115MPa,k, = 7.7,
m = 6 MPa, and\, = 1.05. Note that since we are modelling a single fibre here we enigas
that there is no need to include the isotropic term.

From (11) and (9), we have

¢(n) =mnlogn + (1 —n)[m + Vg, (L)], (19)
and from (12)

mlogn = Vg (1) — Yep(Ly). (20)
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Figure 2: Fit to experimental data from rat tail tendon fikakein from [6], whereby the dots
represent the data extracted digitally from the curve in Jéje solid curve shows the nominal
stressP = o/ versus stretch according to (18) withy = 0 andk;, = 115MPa, k, = 7.7,
m = 6 MPa,\, = 1.05.

There is no energy loss fdy, < I,.. Energy loss foi, > I, is given by
U, — NWa, + ¢(n)] =m(n —logn—1) >0  for <1 (21)

Although there are no data available for the unloading plitasewvorthwhile to illustrate
the stress softening affect inducedspgluring unloading prior to failure. For uniaxial extension
this is shown by the schematic in Fig. 3 with three unloadinges from different points on
the loading path. This parallels Fig. 2 with the nominal streersus stretch.

2.3 Inclusion of collagen fibre cross-links

Let us use the unit vectd, which identifies the collagen fibre direction in the refeigon-

figuration, and introducHl, which is an arbitrary unit vector orthogonallb. Now we consider
two families of cross-links around the collagen fibre di@eiM with the unit vectord * and

L~ which are rotationally symmetric aboMt and with the action oF on them defined by

LE = =+ cos agM + sin agN, FLE = +¢,FM + s,FN, (22)



Nominal stressP
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Figure 3: Schematic of the nominal stregsversus stretch\ during loading in uniaxial ex-

tension (continuous curve), with unloading curves (dasffresn three different points on the
loading curve prior to failure.
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Figure 4:(a) Parallel fibres in th# direction with two families of parallel cross-links dedmd
by the vectord. * andL~ making an angley, with M. (b) Detail of a pair of cross-links,
showing rotational symmetry about thedirection with the orthogonal vectd; adopted from
[13].

whereq,, defines their orientation relative to the directibh see Fig. 4. For conciseness we
have writtens, = sin a, andc, = cos «,.

The invariantl, associated with the fibre direction is given in,(1&nd the invariantg™®,
which are the squares of the stretches in the cross-linktibires, and the quantitids describ-



ing the coupling between the collagen fibres and cross-aingslefined by [13]
I =3I, 4 250¢5(CM) - N + s3(CN) - N, IF = 4coly + 5o(CM) - N. (23)

Note that, in general,* # I~ andly # —I .

From the derivatives of,, I= and I with respect to the right Cauchy—Green ten€or
given in [13] applied to a strain-energy functis,, I,, I, 1, I3, Iy ) we obtain the general
expression of the Cauchy stress tensor as

o = —pl + 2¢b+2¢,FM @ FM
+20,+ [2FM @ FM + s9¢o(FM @ FN + FN @ FM) + s2FN @ FN]
+2,- [fFM @ FM — s0¢o(FM ® FN + FN @ FM) + s{FN @ FN]
+1g+ [2coFM @ FM + 50(FM @ FN + FN ® FM)]
+g-[~2¢)FM ® FM + 54(FM ® FN + FN ® FM)], (24)

as in [13], but with a slightly different notation, where wave used the abbreviations

ov ov

’l/}Ii:— ’l/}gizﬁ

6.[:l: ) (25)

in addition toy; and, defined in (3).

Note that the second Piola—Kirchhoff stress, which is inguarfor finite element imple-
mentations, here denoted Byis related tar by S= F'oF " for an incompressible material.
Consequently, we can determine the total differential

1
dS=C: ZdC, (26)

where the colon denotes the standard double contractiohCas the elasticity tensor in the
material description required for finite element analyB. a general explicit expression f6r
we refer to the appendix.

2.3.1 Uniaxial extension with cross-linking
For uniaxial extension with stretchin the fibre direction we have

FM =AM, FN=X\"2N. (27)
Hence, with these two equations we can deduce from, (22)

FLE = £¢,AM + soA 2N, (28)
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and (23) specializes to
I=TF =@\ + 227!, Iy = I = ¢o)\?, Iy = —I3. (29)
Theny, = Y+ = Y-, b+ = —1- = 15, and (24) specializes to

o=—pl +20,(X°’M M + A 'N@N) + 2¢,)°M @ M
+40(ENM @M + sgA'N @ N) + dihgcoA*M @ M, (30)

the relevant components of which are

0 = —p+ 20 A% + 20,0 + A AN 4 Aihgcg )\, (31)
0= —p+ 20\ " +4rsoA (32)

By eliminating the Lagrange multipligrwe obtain
o =201 (X = A7) + 20,07 + 4 (cgA° — sgA ) + dahsep A, (33)

Now let us use the specific strain-energy functions (15) kupented by quadratic energy
functions associated with the cross-links and fibre/ctimdsinteractions so that

1 k 1 1
W= Sp(l = 3) +ng—{explha(l = 1)7] = 1} + 51 =1+ Sr(ls — o)’ (34)
2

wherev and x are parameters with dimension of stress associated witlerthgs-links and
interactions, respectively. In particular, a largesorresponds to a larger density of cross-links,
while « is a measure of the interaction energy. Here we have adoptg@imple models for the
energy in the cross-links and the interaction energy sineeetare no data available to justify
more sophisticated forms of energy. From (12) with ¢15)is given by

1= exp |- {explia(V — 17— explly (32— 17} |. (35)

From (33) and (34), with the help of (3) and (25), the Cauchgsst then becomes

o = (N = A7)+ 2k A3 (A — 1) expl[ky (A — 1)7]
+4v(I — 1) (N — sgA™) + dr(Ig — co)coN. (36)

The fit to the experimental data of [6] is of similar agreenterthat shown in figure 2. Specific
parameters are, e.¢:, = 120 MPa,rv = 15 MPa,k, = 6.4, m = 6 MPa,a, = 7/4, A\, = 1.02,
rk = 8MPaandu = 0.



3 Application to planar deformation of soft tissues

Next we consider the situation in which the collagen fibres enoss-links are restricted to the
(E;, E,) plane and we define byl the direction of the family of aligned fibres, and its normal
N as

M = cosaE; +sinaE,, N = —sinaE; + cosaE,, (37)
wherea is the angle between the fibre direction and Eyeaxis (see figure 5). With respect
E2

L +
Fiber

N
v M direction

Figure 5:M represents the direction of a family of aligned fibres witit aormalN with respect
to background axeg; andE,, andM makes an angle with respect to thé&; direction. L*
represent the directions of two families of cross-links] Bif make an angle,, with respect to
the+M direction (modified from [13]).

to M andN the cross-link directions* between members of the family and the actiorfFof
thereon are again given by (22). The invaridnt= (CM) - M, as in (1), but withM now
defined by (37), while the invariantd™ and the quantities;” are again given by (23). The
Cauchy stress tenser has the same form (24) as in 3D but is now restricted to 2D.

3.1 Simple shear

For simple shear in thE,; direction in the considered plane, the deformation gradgegiven
by F =1 + vE, ® E,, wherey is the amount of shear. It follows that

FM =M + ~vsin akE;, FN = N + ~ cos aE;. (38)
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The invariant/, = (CM) - M is
I, =1+ ~sin2a ++*sin’ a, (39)
while the required expressiof€N) - N and(CM) - N are given by
(CN)-N =1—~sin2a +~°cos’a, (CM)-N = ~cos2a+7sinacosa. (40)
On substitution of (40) into (23) we obtain

IF =1+ ysin2(a % ap) + 77 sin’(a £ ay), (42)
IF = 4¢o + ysin(og £ 20) +4* sinasin(og £ a). (42)

From (24) the components of the Cauchy stress can be obtd&inede only need here the
shear componert,,, i.e.

o019 = 2y + 2[hy + C%(wﬁ + ) 4 co(hgr — g-)]s(c 4 s)
30[200(¢I+ — )+ P+ + @/}8—](02 — ¥+ 27sc)
ov
+253(@/)I+ +1p,-)c(ye—s5) = (’3—7’ (43)
where for conciseness we have writtes: sin « andc = cos a.

For illustrative purposes we now consider the model stemergy function [13]

1 k 1 1
W= (0, = 3) e fexplly(L — 1)) — 1+ 2u(I* — 1) + 2o —1)?
2 2%, 2 2
1 1
—l—ém(l'; — 00)2 + 55(18_ + 00)2, (44)

which generalizes equation (34) to the case in wHich# I~ andIy # —I5. With (25) it
follows that

Ypr - = 20y[2sc(c) — s0) +(s0¢” + 5°¢h)], (45)
Uy — - = dvyseco(® — 7 4 ysc), (46)
Yot + Pg- = 25750(02 — 4 vse), 47
Yo+ — Yo = 2K7y5¢o(2¢c + 75). (48)

In this case, from (12), we obtain, with the help of (1&hd (39),

ky
mk?Q

n=exp | —5—— {exp[kyy’s*(v5 + 20)"] — explhns®(ves +2)°} |, (49)
where~. is the critical value ofy at which damage is initiated.
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Figure 6: Plots of the dimensionless shear strgssversus the amount of shearwith and
without fibre damage (dashed and solid curves, respectiveith (v = v/ = 05,2,k =
x/p = 0.6) and without ¢ = & = 0) cross-links. Parameter valugs: = k, /i = 2, a = /3,
ky=0.1,7.=0.7,m/u =10, ay = 7/5.

Hence, from (43), we obtain with (3) and (45)—(48)

12 = pry + 2nky explkyy?s” (2¢ + 8)")s” (¢ + 7s) (2¢ + vs)y
+ 4y {25 (ch — s5)* + 2spca(c® — 5%)?
+3sey[(cp — 50)(cps® + s5¢?) + 2s5ca(c® — §°)] + 72 [(chs” + sac?)? + dspeas®c?]}
+ 2k {sp + 45°c*(ch — s5) + 3scy[(sac” + s + 57 (ch — s5)] + 27757 (s5¢ + 5°¢P)
(50)

In figure 6 we plot the dimensionless shear stigss= o,/ from (50) against the amount of
sheary in order to illustrate the dependence on the various paemeThe specific parameter
values used aré, = k;/u = 2, a = 7/3, ky = 0.1, 7, = 0.7, m/pu = 10, oy = 7/5,
andv = v/p = 05,2,k = k/p = 0.6. Without cross-linksy = k = 0. Clearly the shear
stress response stiffens with an increase in the crospankmeterr without damage, while
when damage is included the shear stress is reduced aftgicalaralue ofy and can reach a
maximum asy increases, as evidenced in the case when there are no icrkssHor the related
elasticity tensor of model (44), which is relatively simphee refer to the appendix.

12



4 Discussion and concluding remarks

This study proposes a simple mechanical model for the damamggession of stretched col-
lagen fibres based on a pseudoelastic approach. The modsdgsaifit the limited data that
is available on the stretching of an individual collagendilbeind the agreement with the data
is very satisfactory. The model has then been used for thetreation of a constitutive model
for fibre-reinforced soft tissues in which the collagen fibaee supported by cross-links. The
predictions of the model have been illustrated by an apjpdicdo a simple shear test in which
both damage and cross-links are accounted for. The rel¢dstiosty tensor is also provided
with a view to analyzing more complex boundary-value protdeequiring a finite element
implementation.

To inform the further development of models that incorpprdamage and cross-linking
more data are needed on the response and damage of stretafjledfibres, their influence
on aggregates of collagen fibres embedded in tissues anthalseechanical properties of the
cross-links. It is well-known that the proportion of crdssks increases with age and causes a
stiffening of the tissue [16]. In addition, several studiase shown that the stiffening of fibrous
tissues is related to the concentration of cross-links; sgg, [17, 18]. Such a relationship is
captured by our model.

The effect of proteoglycans is essentially incorporated the isotropic part of the tissue
model partly because it is still unclear what their mechalntontribution is to the overall re-
sponse of the tissue. However, there is evidence that @lytssns can support forces in the
piconewton range when stretched [19] but it is not clear &f ligwvel of stresses they can sup-
port is relevant for a constitutive model of the type prombsethis paper. The review article
by Scott [20] has described a mechanism between the colfdgda (as distinct from fibres)
governed mainly by proteoglycans which are essentiallyagtnal to the fibrils (note that the
author calls this complex an ‘elastic shape module’). H@vavseems that there is no quantifi-
cation yet available that shows how the force is transmitgd/een the individual fibrils. In the
present paper we focus on the collagen fibre level without@ating for the structure of fibrils
and proteoglycans. In addition, because of the orthogamahgement of the proteoglycans
with respect to the fibrils, see [21], the force transitiondoonly be relevant for rather large
deformations. It is worth pointing out, however, that fob@nsition between proteoglycans and
fibrils was accounted for in a mechanical model in [22], inetha collagen fibre is represented
as a bundle of collagen fibrils cross-linked by proteoglygcan

More advanced multi-scale models are needed that capteteetiaviours of the individual
constituents such as proteoglycans, cross-linking prstand their interaction with collagen

13



molecules, fibrils and fibres and their aggregated contahatto the tissue. There is hope
that current imaging modalities will allow a better undarsting of the structure down to the
nanoscale, but there is also a need for mechanical infoomati the same level. In order to
tackle organ level simulations the proposed model allows fstraightforward implementation

within the finite element method, which is a powerful tool &malyzing more clinically relevant

problems in health and disease.
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Appendix
Here we explicitly present the elasticity tengbm the material description which is defined by
PR
C=4 5CIC” (51)

Consider an energy function of the fonin(I,, I,, I, I3, n), where the four invariants are de-
fined according to (1) and (23),= n(1,) is a damage variable accommodating damage only in
the fibres, which is not specified explicitly at this pointdamherel, is the square of the stretch
in the fibre direction. Then the derivatives of the invarsaamdn with respect taC are

oI oI or* oIF
(‘3—(; =1, 6—é =AM, 8—C = C(Q)AM + 250coAnn + SgANa (’3—(82 = £coAm + SoAuN,
and 5
Ui
oC = 77/(]4)AM7

where we have introduced the notations
1
Ay =MaM, AMNIQ(M ON+N@M)=An;, Ax=N&N.

14



It follows that

ov /
8—C = 'QZ)1I + [¢4 + C%(Q/Jﬁ + %—) + CO(¢]; - ¢]§) + %ﬁ]AM

+[25000(¢1+ - w[_) + 80(1/11; + w[§>]AMN + 3%0/}[‘* + 1/}[_ )ANv

where we have used the abbreviations (3), (25)@ape 0¥ /dn. Then, we can write

O’V
5CC al @1+ ay(l @ Ay +AM @) +asAy @ Ay + as(l @ Ay + AN R )
+a5(1 @ Ay + Aun @ 1) + ag(Ay @ Ax + Ax @ Ay) + arAy @ Ay
+ag(Ay @ Aux + Ann @ Anp) + ag(Ax @ Ay + Ay @ Ax) + a10AnN @ Ay,
where

a; = P11, Gy =Py + wlnn’ + Cg(dﬁﬁ +p )+ Co(wug - wug—),
ag = Yaa + 2y + Vo’ + Uy + 26 [ + by + 0 (W + 6y )
200y = Vug + 0 Wy = V] + GO ps + ¥y -+ 2000 ,)
+C§(¢I§I§ t U — W)+ 208@)1*15 —Yp T V)
ay = 5%(1/111+ + 1/111*)7 as = 230¢0(¢11+ - 1/111*) + SO(wug + 1/’118*)7
ag = so[tyr + Yy + 1 (e + 0+ S0 (Ve + U+ 200 -)
soco(Wp = Ve F ¥ — Vo),
a; = sé(wﬁﬁ +p- -+ 24 ,-),
ag = 250Co[th, v — - + 1 (Y, 1+ — V)] + Sl + - + 77/(@/)”[; +U,0)]
+250C0(Vprpr — ) + soCo(Vrtr — iz pz)
+50C0 (3¢ — Ypr e — U 430 10),
ag = 28560 (Yprp+ — Uy =) + S0yt + Vpr e U 0 0),
ayg = 485Co (Ve pr + - = 20 )+ 5o (U + U+ 205 ,0)
+4sgco(wl+1; TV = U — Ug)-
For notational simplicity the subscripts 4, 8" and8~ on « stand forI,, I,, I and I,
respectively, and we have introduced the abbreviatign= 9°¥/d(e)0(x). Note that in the
expression for, in eq. (78) of [13] the sign before, i was incorrectly written as-.
For the model (44) these expressions simplify considerahhng

a1:a2:a4:a5:a8:a9:07

2 4 2 2 2 4 2 2 2
as = n(g — g /m) + 2vcy + 26y, ag = 2USycy,  ay = 2USy, a9 = 8USyCh + 2KS0,

wherev; is defined according to (7 andvyg = 82\I!ﬁb/8lf. Note that the explicit expressions
for n andWyg,, are provided in (12) and (15)respectively.
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