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We propose a mechanical model to account for
progressive damage in collagen fibres within fibrous
soft tissues. The model has a similar basis to the
pseudoelastic model that describes the Mullins effect
in rubber but it also accounts for the effect of cross-
links between collagen fibres. We show that the model
is able to capture experimental data obtained from
rat tail tendon fibres, and the combined effect of
damage and collagen cross-links is illustrated for a
simple shear test. The proposed three-dimensional
framework allows a straightforward implementation
in finite-element codes, which are needed to analyse
more complex boundary-value problems for soft
tissues under supra-physiological loading or tissues
weakened by disease.

1. Introduction
Fibrous soft tissues consist of distributions of collagen
fibres which, for example, could be almost parallel, as
is the case for tendons, dispersed, as for artery walls, or
isotropic, as for the middle zone of cartilage. These fibres
are embedded in an essentially isotropic extrafibrillar
matrix consisting of elastic fibres (including elastin),
proteoglycans, water, adhesion proteins and integrins,
inter alia. Of particular interest are the mechanical
properties of the collagen fibres, the main load-bearing
constituents of soft tissues, and their contribution to
the overall behaviour of the tissues [1]. There are
several constitutive models available that capture the
distribution of collagen fibres [2–5]. However, it is
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important to note that under certain supra-physiological loads and in certain tissue diseases
collagen starts to soften and finally ruptures, as shown by the experimental data in Pins & Silver
[6] on a single collagen fibre. But as yet such effects on the microscale have not been incorporated
in constitutive models. For soft biological tissues, a number of damage models are available, as
described in [7]. For example, one study [8] derives a fibre/fibril damage model based on failure
once a critical tissue stretch is reached. The proposed model reproduces the typical nonlinear
behaviour of ligaments, including the toe and linear regions, then damage and eventual failure.
The computational work in [9] proposes a (rather complex) macroscopic tissue damage model
by considering recruitment stretches for the fibre content and failure of fibres in a distribution at
different stretches or strain energies. Decoupled damage mechanisms for the matrix and fibres
are considered. On the basis of [8], the constitutive model in [10] considers fibre recruitment
and damage distributions by using probability density functions. It also includes a constitutive
model for unloading after damage. The work in [11] applies the constrained mixture theory of [12]
to study the formation/dilatation of abdominal aortic aneurysms. In particular, the constitutive
model accounts for continuous degradation and creation of collagen fibres (i.e. the disappearance
of old collagen and appearance of new collagen). The purpose of the present paper is now to
develop a basic model at the collagen/cross-link microscale level that can account for these
softening and failure effects.

The influence of the concentration of collagen fibre cross-links on the anisotropic response of
fibrous soft tissues such as arterial walls was first analysed with a fully three-dimensional model
in [13]. However, that approach was solely based on the theory of hyperelasticity and no damage
mechanism was included, which limits its applicability. Another aim of this paper is, therefore, to
account for collagen fibre damage in the presence of undamaged cross-links, which is the subject
of §2. The model has a similar structure to that of the pseudoelastic model of the Mullins effect of
rubber published in [14] but takes account of damage during loading rather than unloading. In
the present account, this damage model is used to reproduce the experimental behaviour of rat tail
tendon fibres. In §3, with the inclusion of cross-links, we analyse the combined effect of damage
and cross-links in the simple shear of a single family of parallel fibres embedded in an isotropic
matrix. In particular, we demonstrate the influence of damage and the proportion of cross-links
on the shear stress versus the amount of shear response. This illustrates that fibre damage leads to
a softening behaviour and finally failure of the tissue. In §4, we provide concluding remarks and
point to the needs for further experimental data at the microscopic level to inform the macroscopic
tissue behaviour. This model approach can be implemented in a finite-element code to execute
more realistic boundary-value problems, for which purpose we provide the elasticity tensor in
appendix A.

2. Damage model considering cross-linking

(a) Damage formulation
We start by introducing the deformation gradient F relative to a given reference configuration,
and the related right and left Cauchy–Green tensors C = FTF and b = FFT, respectively. For further
use, we define the isotropic invariant I1 and the pseudo-invariant I4 according to

I1 = tr C and I4 = (CM) · M = λ2, (2.1)

where M is the direction of aligned fibres in the stress-free reference configuration which are
embedded in an isotropic matrix and λ is the fibre stretch. Now let us consider a fibre-reinforced
material such as a collagenous soft tissue, which is subject to the incompressibility constraint
det F = 1, with a strain-energy function of the form Ψ (I1, I4). The Cauchy stress tensor σ is then
given by [15]

σ = 2ψ1b + 2ψ4m ⊗ m − pI, (2.2)
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where p is a Lagrange multiplier and m = FM is the fibre direction in the deformed configuration.
Here, for convenience, we have introduced the abbreviations

ψ1 = ∂Ψ

∂I1
and ψ4 = ∂Ψ

∂I4
. (2.3)

Now we consider the possibility of damage occurring when the stretch λ in the fibre exceeds
some critical value, say λc. To model the damage effect, we introduce a (dimensionless) damage
variable η, which is an additional independent variable so that Ψ (I1, I4, η). In the damage phase,
the Cauchy stress is again given by (2.2) with the optimization condition

∂Ψ

∂η
= 0, (2.4)

which gives η implicitly in terms of I1 and I4. Let I4c = λ2
c be the critical value of I4. We take η= 1

whenever I4 ≤ I4c, so (2.2) applies with Ψ (I1, I4, 1) and (2.4) is not active. For definiteness, we now
take

Ψ (I1, I4, η) =Ψiso(I1) + ηΨfib(I4) + φ(η), (2.5)

analogously to the model of the Mullins effect [14], where φ(η) is some measure of damage. Then
(2.2) gives

σ = 2ψib + 2ηψfm ⊗ m − pI, (2.6)

where we have introduced the abbreviations

ψi = ∂Ψiso

∂I1
and ψf = ∂Ψfib

∂I4
, (2.7)

and with (2.5) the optimization condition (2.4) gives

φ′(η) = −Ψfib(I4), (2.8)

which determines η in terms of I4, i.e. damage is only related to the fibres. We require

φ(1) = 0 and φ′(1) = −Ψfib(I4c). (2.9)

Note that if we use (2.4) to give η= η(I4) and write, say,

Ψ (I4) = ηΨfib(I4) + φ(η), (2.10)

then by (2.8) we obtainΨ ′ = ηψf, whereψf is according to (2.7)2. This leads to an alternative arrival
at the second term on the right-hand side of (2.6).

A suitable choice of φ′(η), which gives a decaying behaviour for η as I4 increases beyond I4c
and damage progresses, is

φ′(η) = m log η − Ψfib(I4c), (2.11)

and hence, by (2.8),

η= exp
(

−Ψfib(I4) − Ψfib(I4c)
m

)
, (2.12)

where m> 0 is a parameter with the same dimension as Ψ . Figure 1 provides a schematic of the
damage parameter η as a function of the stretch λ. It shows that η decreases from 1 when the
stretch λ increases beyond the critical value λc down to the value ηf when λ reaches the failure
value λf. This schematic is based on specific calculations of η for uniaxial extension and simple
shear, which exhibit very similar behaviour.
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Figure 1. Damage parameter η versus stretchλ, with critical stretchλc and failure stretchλf .

(b) Uniaxial extension
Let λ be the stretch in the fibre direction M and σ the related uniaxial Cauchy stress. Then, the
components of (2.6) yield

σ = 2ψiλ
2 + 2ηλ2ψf − p and 0 = 2ψiλ

−1 − p, (2.13)

and hence, on elimination of p,

σ = 2ψi(λ2 − λ−1) + 2ηλ2ψf, (2.14)

where ψi and ψf are defined in (2.7). Now choose

Ψiso = μ

2
(I1 − 3) and Ψfib = k1

2k2

{
exp[k2(I4 − 1)2] − 1

}
, (2.15)

for the matrix and the fibre properties, respectively, where μ and k1 are stress-like parameters,
while k2 is dimensionless. Hence, according to (2.7), 2ψi =μ and 2ψf = 2k1(I4 − 1) exp[k2(I4 − 1)2],
so that (2.12), gives

η= exp
[
− k1

2mk2

{
exp[k2(I4 − 1)2] − exp[k2(I4c − 1)2]

}]
, (2.16)

with I4 = λ2 and I4c = λ2
c .

From (2.14), we then obtain

σ =μ(λ2 − λ−1) + 2k1λ
2(λ2 − 1) exp[k2(λ2 − 1)2], (2.17)

when no damage occurs (λ≤ λc), and

σ =μ(λ2 − λ−1) + 2ηk1λ
2(λ2 − 1) exp[k2(λ2 − 1)2], (2.18)

with (2.16), when λ≥ λc.
The nominal stress P = σ/λ is plotted in figure 2 as a fit to the uniaxial test data from a rat tail

tendon fibre shown in [6], using the parameter values μ= 0, k1 = 115 MPa, k2 = 7.7, m = 6 MPa
and λc = 1.05. Note that, since we are modelling a single fibre here, we emphasize that there is no
need to include the isotropic term.
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Figure 2. Fit to experimental data from a rat tail tendon fibre taken from [6], whereby the dots represent the data extracted
digitally from the curve in [6]. The solid curve shows the nominal stress P = σ/λ versus stretch λ according to (2.18) with
μ= 0 and k1 = 115 MPa, k2 = 7.7,m= 6 MPa,λc = 1.05.

From (2.9)1 and (2.11), we have

φ(η) = mη log η + (1 − η)[m + Ψfib(I4c)], (2.19)

and from (2.12)

m log η=Ψfib(I4c) − Ψfib(I4). (2.20)

There is no energy loss for I4 ≤ I4c. Energy loss for I4 ≥ I4c is given by

Ψfib − [ηΨfib + φ(η)] = m(η − log η − 1)> 0 for η < 1. (2.21)

Although there are no data available for the unloading phase, it is worthwhile illustrating the
stress softening effect induced by η during unloading prior to failure. For uniaxial extension, this
is shown by the schematic in figure 3 with three unloading curves from different points on the
loading path. This parallels figure 2 with the nominal stress versus stretch.

(c) Inclusion of collagen fibre cross-links
Let us use the unit vector M, which identifies the collagen fibre direction in the reference
configuration, and introduce N, which is an arbitrary unit vector orthogonal to M. Now we
consider two families of cross-links around the collagen fibre direction M with the unit vectors L+

and L−, which are rotationally symmetric about M, and with the action of F on them defined by

L± = ± cosα0M + sinα0N and FL± = ±c0FM + s0FN, (2.22)

where α0 defines their orientation relative to the direction M (figure 4). For conciseness, we have
written s0 = sinα0 and c0 = cosα0.

The invariant I4 associated with the fibre direction is given in (2.1)2, and the invariants I±,
which are the squares of the stretches in the cross-link directions, and the quantities I±8 describing
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Figure 3. Schematic of the nominal stress P versus stretch λ during loading in uniaxial extension (continuous curve), with
unloading curves (dashed) from three different points on the loading curve prior to failure.

N

M

collagen fibrecross-link

−L +L
−L +L

a0

a0

(a) (b)

Figure 4. (a) Parallel fibres in the M direction with two families of parallel cross-links described by the vectors L+ and L−

making an angle α0 with M. (b) Detail of a pair of cross-links, showing rotational symmetry about the M direction with the
orthogonal vector N (modified from [13]).

the coupling between the collagen fibres and cross-links are defined by Holzapfel & Ogden [13]

I± = c2
0I4 ± 2s0c0(CM) · N + s2

0(CN) · N and I±8 = ±c0I4 + s0(CM) · N. (2.23)

Note that, in general, I+ �= I− and I+8 �= −I−8 .
From the derivatives of I4, I± and I±8 with respect to the right Cauchy–Green tensor C given in

[13] applied to a strain-energy function Ψ (I1, I4, I+, I−, I+8 , I−8 ), we obtain the general expression of
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the Cauchy stress tensor as

σ = −pI + 2ψ1b + 2ψ4FM ⊗ FM

+ 2ψI+ [c2
0FM ⊗ FM + s0c0(FM ⊗ FN + FN ⊗ FM) + s2

0FN ⊗ FN]

+ 2ψI− [c2
0FM ⊗ FM − s0c0(FM ⊗ FN + FN ⊗ FM) + s2

0FN ⊗ FN]

+ ψ8+ [2c0FM ⊗ FM + s0(FM ⊗ FN + FN ⊗ FM)]

+ ψ8− [−2c0FM ⊗ FM + s0(FM ⊗ FN + FN ⊗ FM)], (2.24)

as in [13], but with a slightly different notation, where we have used the abbreviations

ψI± = ∂Ψ

∂I±
and ψ8± = ∂Ψ

∂I±8
(2.25)

in addition to ψ1 and ψ4 defined in (2.3).
Note that the second Piola–Kirchhoff stress, which is important for finite-element

implementations, here denoted by S, is related to σ by S = F−1σF−T for an incompressible
material. Consequently, we can determine the total differential

dS = C :
1
2

dC, (2.26)

where the colon denotes the standard double contraction and C is the elasticity tensor in the
material description required for finite-element analysis. For a general explicit expression for C,
we refer to appendix A.

(i) Uniaxial extension with cross-linking

For uniaxial extension with stretch λ in the fibre direction, we have

FM = λM and FN = λ−1/2N. (2.27)

Hence, with these two equations we can deduce from (2.22)2

FL± = ±c0λM + s0λ
−1/2N, (2.28)

and (2.23) specializes to

I ≡ I± = c2
0λ

2 + s2
0λ

−1, I8 = I+8 = c0λ
2 and I−8 = −I+8 . (2.29)

Then ψI =ψI+ =ψI− ,ψ8+ = −ψ8− =ψ8, and (2.24) specializes to

σ = −pI + 2ψ1(λ2M ⊗ M + λ−1N ⊗ N) + 2ψ4λ
2M ⊗ M

+ 4ψI(c2
0λ

2M ⊗ M + s2
0λ

−1N ⊗ N) + 4ψ8c0λ
2M ⊗ M, (2.30)

the relevant components of which are

σ = −p + 2ψ1λ
2 + 2ψ4λ

2 + 4ψIc2
0λ

2 + 4ψ8c0λ
2 (2.31)

and
0 = −p + 2ψ1λ

−1 + 4ψIs2
0λ

−1. (2.32)

By eliminating the Lagrange multiplier p we obtain

σ = 2ψ1(λ2 − λ−1) + 2ψ4λ
2 + 4ψI(c2

0λ
2 − s2

0λ
−1) + 4ψ8c0λ

2. (2.33)

Now let us use the specific strain-energy functions (2.15) supplemented by quadratic energy
functions associated with the cross-links and fibre/cross-link interactions so that

Ψ = 1
2
μ(I1 − 3) + η

k1

2k2
{exp[k2(I4 − 1)2] − 1} + 1

2
ν(I − 1)2 + 1

2
κ(I8 − c0)2, (2.34)

where ν and κ are parameters with dimension of stress associated with the cross-links and
interactions, respectively. In particular, a larger ν corresponds to a larger density of cross-links,
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Figure 5. M represents the direction of a family of aligned fibres with unit normal N with respect to background axes E1 and
E2, andMmakes an angleα with respect to the E1 direction. L± represents the directions of two families of cross-links, and L±

make an angleα0 with respect to the±M direction (modified from Holzapfel & Ogden [13]).

while κ is a measure of the interaction energy. Here, we have adopted very simple models for
the energy in the cross-links and the interaction energy since there are no data available to justify
more sophisticated forms of energy. From (2.12) with (2.15)2, η is given by

η= exp
[
− k1

2mk2

{
exp[k2(λ2 − 1)2] − exp[k2(λ2

c − 1)2]
}]

. (2.35)

From (2.33) to (2.34), with the help of (2.3) and (2.25), the Cauchy stress σ then becomes

σ =μ(λ2 − λ−1) + 2k1ηλ
2(λ2 − 1) exp[k2(λ2 − 1)2]

+ 4ν(I − 1)(c2
0λ

2 − s2
0λ

−1) + 4κ(I8 − c0)c0λ
2. (2.36)

The fit to the experimental data of [6] is of similar agreement to that shown in figure 2. Specific
parameters are, for example, k1 = 120 MPa, ν = 15 MPa, k2 = 6.4, m = 6 MPa, α0 = π/4, λc = 1.02,
κ = 8 MPa and μ= 0.

3. Application to planar deformation of soft tissues
Next, we consider the situation in which the collagen fibres and cross-links are restricted to the
(E1, E2) plane and we define by M the direction of the family of aligned fibres and its normal N as

M = cosαE1 + sinαE2 and N = − sinαE1 + cosαE2, (3.1)

where α is the angle between the fibre direction and the E1 axis (figure 5). With respect to M and N
the cross-link directions L± between members of the family and the action of F thereon are again
given by (2.22). The invariant I4 = (CM) · M is as in (2.1)2, but with M now defined by (3.1)1, while
the invariants I± and the quantities I±8 are again given by (2.23). The Cauchy stress tensor σ has
the same form (2.24) as in three dimensions but is now restricted to two dimensions.

(a) Simple shear
For simple shear in the E1 direction in the considered plane, the deformation gradient is given by
F = I + γE1 ⊗ E2, where γ is the amount of shear. It follows that

FM = M + γ sinαE1 and FN = N + γ cosαE1. (3.2)
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The invariant I4 = (CM) · M is

I4 = 1 + γ sin 2α + γ 2 sin2 α, (3.3)

while the required expressions (CN) · N and (CM) · N are given by

(CN) · N = 1 − γ sin 2α + γ 2 cos2 α and (CM) · N = γ cos 2α + γ 2 sinα cosα. (3.4)

On substitution of (3.4) into (2.23), we obtain

I± = 1 + γ sin 2(α ± α0) + γ 2 sin2(α ± α0) (3.5)

and
I±8 = ±c0 + γ sin(α0 ± 2α) + γ 2 sinα sin(α0 ± α). (3.6)

From (2.24), the components of the Cauchy stress can be obtained, but we only need here the
shear component σ12, i.e.

σ12 = 2ψ1γ + 2[ψ4 + c2
0(ψI+ + ψI− ) + c0(ψ8+ − ψ8−)]s(c + γ s)

s0[2c0(ψI+ − ψI−) + ψ8+ + ψ8− ](c2 − s2 + 2γ sc)

+ 2s2
0(ψI+ + ψI−)c(γ c − s) ≡ ∂Ψ

∂γ
, (3.7)

where for conciseness we have written s = sinα and c = cosα.
For illustrative purposes, we now consider the model strain-energy function [13]

Ψ = 1
2
μ(I1 − 3) + η

k1

2k2
{exp[k2(I4 − 1)2] − 1} + 1

2
ν(I+ − 1)2 + 1

2
ν(I− − 1)2

+ 1
2
κ(I+8 − c0)2 + 1

2
κ(I−8 + c0)2, (3.8)

which generalizes equation (2.34) to the case in which I+ �= I− and I+8 �= −I−8 . With (2.25) it follows
that

ψI+ + ψI− = 2νγ [2sc(c2
0 − s2

0) + γ (s2
0c2 + s2c2

0)], (3.9)

ψI+ − ψI− = 4νγ s0c0(c2 − s2 + γ sc), (3.10)

ψ8+ + ψ8− = 2κγ s0(c2 − s2 + γ sc) (3.11)

and ψ8+ − ψ8− = 2κγ sc0(2c + γ s). (3.12)

In this case, from (2.12), we obtain, with the help of (2.15)2 and (3.3),

η= exp
[
− k1

2mk2

{
exp[k2γ

2s2(γ s + 2c)2] − exp[k2γ
2
c s2(γcs + 2c)2]

}]
, (3.13)

where γc is the critical value of γ at which damage is initiated.
Hence, from (3.7), we obtain with (2.3) and (3.9)–(3.12)

σ12 =μγ + 2ηk1 exp[k2γ
2s2(2c + γ s)2]s2(c + γ s)(2c + γ s)γ

+ 4νγ {2s2c2(c2
0 − s2

0)2 + 2s2
0c2

0(c2 − s2)2

+ 3scγ [(c2
0 − s2

0)(c2
0s2 + s2

0c2) + 2s2
0c2

0(c2 − s2)] + γ 2[(c2
0s2 + s2

0c2)2 + 4s2
0c2

0s2c2]}
+ 2κγ {s2

0 + 4s2c2(c2
0 − s2

0) + 3scγ [(s2
0c2 + s2c2

0) + s2(c2
0 − s2

0)] + 2γ 2s2(s2
0c2 + s2c2

0)}. (3.14)

In figure 6, we plot the dimensionless shear stress σ̄12 = σ12/μ from (3.14) against the amount of
shear γ in order to illustrate the dependence on the various parameters. The specific parameter
values used are k̄1 = k1/μ= 2, α= π/3, k2 = 0.1, γc = 0.7, m/μ= 10, α0 = π/5, and ν̄ = ν/μ=
0.5, 2, κ̄ = κ/μ= 0.6. Without cross-links ν̄ = κ̄ = 0. Clearly, the shear stress response stiffens with
an increase in the cross-link parameter ν̄ without damage, while when damage is included the
shear stress is reduced after a critical value of γ and can reach a maximum as γ increases, as
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Figure6. Plots of the dimensionless shear stressσ 12 versus the amount of shearγ with andwithout fibre damage (dashed and
solid curves, respectively), with (ν̄ = ν/μ= 0.5, 2, κ̄ = κ/μ= 0.6) and without (ν̄ = κ̄ = 0) cross-links. Parameter
values: k̄1 = k1/μ= 2,α= π/3, k2 = 0.1, γc = 0.7,m/μ= 10,α0 = π/5.

evidenced in the case when there are no cross-links. For the related elasticity tensor of model
(3.8), which is relatively simple, we refer to appendix A.

4. Discussion and concluding remarks
This study proposes a simple mechanical model for the damage progression of stretched collagen
fibres based on a pseudoelastic approach. The model is used to fit the limited data that are
available on the stretching of an individual collagen fibre, and the agreement with the data is very
satisfactory. The model has then been used for the construction of a constitutive model for fibre-
reinforced soft tissues in which the collagen fibres are supported by cross-links. The predictions
of the model have been illustrated by an application to a simple shear test in which both damage
and cross-links are accounted for. The related elasticity tensor is also provided with a view to
analysing more complex boundary-value problems requiring a finite-element implementation.

To inform the further development of models that incorporate damage and cross-linking
more data are needed on the response and damage of stretched single fibres, their influence on
aggregates of collagen fibres embedded in tissues and also the mechanical properties of the cross-
links. It is well known that the proportion of cross-links increases with age and causes a stiffening
of the tissue [16]. In addition, several studies have shown that the stiffening of fibrous tissues
is related to the concentration of cross-links (e.g. [17,18]). Such a relationship is captured by our
model.

The effect of proteoglycans is essentially incorporated into the isotropic part of the tissue
model, partly because it is still unclear what their mechanical contribution is to the overall
response of the tissue. However, there is evidence that proteoglycans can support forces in the
piconewton range when stretched [19], but it is not clear if the level of stresses they can support is
relevant for a constitutive model of the type proposed in this paper. The review article by Scott [20]
has described a mechanism between the collagen fibrils (as distinct from fibres) governed mainly
by proteoglycans, which are essentially orthogonal to the fibrils (note that the author calls this
complex an ‘elastic shape module’). However, it seems that there is no quantification yet available
that shows how the force is transmitted between the individual fibrils. In the present paper, we
focus on the collagen fibre level without accounting for the structure of fibrils and proteoglycans.
In addition, because of the orthogonal arrangement of the proteoglycans with respect to the fibrils
(see [21]), the force transition would only be relevant for rather large deformations. It is worth
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pointing out, however, that force transition between proteoglycans and fibrils was accounted for
in a mechanical model in [22], in which a collagen fibre is represented as a bundle of collagen
fibrils cross-linked by proteoglycans.

More advanced multi-scale models are needed that capture the behaviours of the individual
constituents such as proteoglycans, cross-linking proteins and their interaction with collagen
molecules, fibrils and fibres and their aggregated contributions to the tissue. There is hope
that current imaging modalities will allow a better understanding of the structure down to the
nanoscale, but there is also a need for mechanical information at the same level. In order to
tackle organ-level simulations the proposed model allows for a straightforward implementation
within the finite-element method, which is a powerful tool for analysing more clinically relevant
problems in health and disease.
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Appendix A
Here, we explicitly present the elasticity tensor C in the material description, which is defined by

C = 4
∂2Ψ

∂C∂C
. (A 1)

Consider an energy function of the form Ψ (I1, I4, I±, I±8 , η), where the four invariants are defined
according to (2.1) and (2.23), η= η(I4) is a damage variable accommodating damage only in the
fibres, which is not specified explicitly at this point, and where I4 is the square of the stretch in the
fibre direction. Then the derivatives of the invariants and η with respect to C are

∂I1

∂C
= I,

∂I4

∂C
= AM,

∂I±

∂C
= c2

0AM ± 2s0c0AMN + s2
0AN,

∂I±8
∂C

= ±c0AM + s0AMN

and
∂η

∂C
= η′(I4)AM,

where we have introduced the notations

AM = M ⊗ M, AMN = 1
2

(M ⊗ N + N ⊗ M) = ANM, AN = N ⊗ N.

It follows that

∂Ψ

∂C
=ψ1I + [ψ4 + c2

0(ψI+ + ψI− ) + c0(ψI+8
− ψI−8

) + ψηη
′]AM

+ [2s0c0(ψI+ − ψI− ) + s0(ψI+8
+ ψI−8

)]AMN + s2
0(ψI+ + ψI− )AN,

where we have used the abbreviations (2.3), (2.25) and ψη = ∂Ψ/∂η. Then, we can write

∂2Ψ

∂C∂C
= a1I ⊗ I + a2(I ⊗ AM + AM ⊗ I) + a3AM ⊗ AM + a4(I ⊗ AN + AN ⊗ I)

+ a5(I ⊗ AMN + AMN ⊗ I) + a6(AM ⊗ AN + AN ⊗ AM) + a7AN ⊗ AN

+ a8(AM ⊗ AMN + AMN ⊗ AM) + a9(AN ⊗ AMN + AMN ⊗ AN) + a10AMN ⊗ AMN,
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where

a1 =ψ11, a2 =ψ14 + ψ1ηη
′ + c2

0(ψ1I+ + ψ1I− ) + c0(ψ1I+8
− ψ1I−8

),

a3 =ψ44 + 2ψ4ηη
′ + ψηηη

′2 + ψηη
′′ + 2c2

0[ψ4I+ + ψ4I− + η′(ψηI+ + ψηI− )]

+ 2c0[ψ4I+8
− ψ4I−8

+ η′(ψηI+8
− ψηI−8

)] + c4
0(ψI+I+ + ψI−I− + 2ψI+I− )

+ c2
0(ψI+8 I+8

+ ψI−8 I−8
− 2ψI+8 I−8

) + 2c3
0(ψI+I+8

− ψI+I−8
+ ψI−I+8

− ψI−I−8
),

a4 = s2
0(ψ1I+ + ψ1I− ), a5 = 2s0c0(ψ1I+ − ψ1I− ) + s0(ψ1I+8

+ ψ1I−8
),

a6 = s2
0[ψ4I+ + ψ4I− + η′(ψηI+ + ψηI− )] + s2

0c2
0(ψI+I+ + ψI−I− + 2ψI+I− )

s2
0c0(ψI+I+8

− ψI+I−8
+ ψI−I+8

− ψI−I−8
),

a7 = s4
0(ψI+I+ + ψI−I− + 2ψI+I− ),

a8 = 2s0c0[ψ4I+ − ψ4I− + η′(ψηI+ − ψηI− )] + s0[ψ4I+8
+ ψ4I−8

+ η′(ψηI+8
+ ψηI−8

)]

+ 2s0c3
0(ψI+I+ − ψI−I− ) + s0c0(ψI+8 I+8

− ψI−8 I−8
)

+ s0c2
0(3ψI+I+8

− ψI+I−8
− ψI−I+8

+ 3ψI−I−8
),

a9 = 2s3
0c0(ψI+I+ − ψI−I− ) + s3

0(ψI+I+8
+ ψI+I−8

+ ψI−I+8
+ ψI−I−8

)

and a10 = 4s2
0c2

0(ψI+I+ + ψI−I− − 2ψI+I− ) + s2
0(ψI+8 I+8

+ ψI−8 I−8
+ 2ψI+8 I−8

)

+ 4s2
0c0(ψI+I+8

+ ψI+I−8
− ψI−I+8

− ψI−I−8
).

For notational simplicity, the subscripts 1, 4, 8+ and 8− onψ stand for I1, I4, I+8 and I−8 , respectively,
and we have introduced the abbreviation ψ•� = ∂2Ψ/∂(•)∂(�). Note that in the expression for a2 in
eqn (78) of [13] the sign before ψ1I−8

was incorrectly written as +.
For the model (3.8), these expressions simplify considerably, giving

a1 = a2 = a4 = a5 = a8 = a9 = 0

and
a3 = η(ψff − ψ2

f /m) + 2νc4
0 + 2κc2

0, a6 = 2νs2
0c2

0, a7 = 2νs4
0, a10 = 8νs2

0c2
0 + 2κs2

0,

where ψf is defined according to (2.7)2 and ψff = ∂2Ψfib/∂I2
4. Note that the explicit expressions for

η and Ψfib are provided in (2.12) and (2.15)2, respectively.
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