
Received: 26 September 2022 Accepted: 21 December 2022

DOI: 10.1002/pamm.202200029

Multiphasic modelling of thrombus formation and growth based on the
Theory of Porous Media
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Aortic dissection (AD) has a high mortality rate. 40% of the people with Type B Aortic Dissection do not live for more than
a month. The prognosis of Aortic Dissection is quite challenging leading to an interest in computational methods to help
with the decision-making process for the treatment. The Theory of Porous Media (TPM) provides an excellent framework to
describe the multiphasic structure of the thrombus. The whole aggregate is divided into solid, liquid and nutrient constituents.
We assume the constituents to be materially incompressible, the whole aggregate to be fully saturated and under isothermal
conditions. The balance equations of the constituents have coupling terms, also known as production terms, which take care
of the interactions between the different phases. The volume fractions define the constituents. Therefore, the regions with
thrombus are determined using the solid volume fraction. Darcy’s law describes the flow of fluid in the porous media. We
present the set of equations and a numerical example for thrombosis in Type B Aortic Dissection. We implement the equations
in PANDAS, a finite element package designed to solve strongly coupled multiphase porous media problems.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

The aorta is one of the essential arteries in the body. The heart pumps the blood from the left ventricle into the aorta via the
aortic valve, which opens and closes with each heartbeat to allow a one-way blood flow. Aortic dissection begins when the
tear occurs in the inner layer (intima) of the aortic wall. This tear allows the blood to flow between the inner and middle layers
causing them to separate (dissect). This second blood-filled channel is called the false lumen, where thrombosis occurs, see
Figure 1. The tear can occur due to high blood pressure leading to increased stress on the aortic wall, weakening of the wall,
pre-existing aneurysm or defects in the aortic valve. Approximately 75% of Type B Aortic Dissection (TBAD) patients have
hypertension [1, 2].

Aortic dissection’s short-term and long-term diagnosis remains unclear [3–6]. This led to an interest in computational
methods to understand the formation and growth of thrombus. Blood clotting or coagulation is the process which prevents
excessive bleeding by forming a spatial structure called a thrombus which consists of small blood cells (platelets) and fibrous
protein (fibrin). The formation of a thrombus involves a complex sequence of biochemical reactions [7,8]. Therefore, we use a
macroscopic continuum-mechanical approach of the Theory of Porous Media (TPM) which provides an excellent framework
to describe the complex microstructure of the multiphasic thrombus [9,10]. The theory of mixtures was continuously improved
and developed to the current understanding of the TPM by de Boer & Ehlers [11], and Ehlers [12, 13].

Chemical, mechanical, genetic, and metabolic factors drive the growth process of the thrombus. The model description is
challenging due to the lack of detailed knowledge and parameters to quantify the influence of different factors. However, the
effects of the blood velocity and the nutrients on the growth of thrombus are well-researched [14–16]. Therefore, we present
a velocity and nutrient concentration-induced growth model based on the TPM. We treat the highly coupled set of differential
equations within the framework of the standard Galerkin procedure and implement the weak forms in the nonlinear finite
element solver PANDAS.

2 Theory of Porous Media

The Theory of Porous Media provides an excellent framework to macroscopically describe the complicated microstructure of
the thrombus without knowing its detailed geometry. Therefore, a representative elementary volume (REV) is locally defined,
where the individual constituents are considered to be in a state of ideal disarrangement. Using the real or virtual averaging
processes over the REV, the micro-scale information of the overall aggregate and its constituents are homogenised to macro-
scale quantities. For the investigated porous body, the immiscible parts lead to a triphasic aggregate φ consisting of solid
φS (subendothelial collagen, activated platelets, fibrin, wall cells), which is saturated by fluid φF . The fluid itself consists
of nutrients φN (deactivated platelets, clotting factors) and liquid φL (blood minus the nutrients and activated platelets), see
Figure 2.
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Fig. 1: Illustrations of the false lumen in TBAD (left) and formation
of thrombus in false lumen (right) [17].

Fig. 2: REV of the microstructure of porous material
(left), TPM macro-model obtained by volumetric ho-
mogenisation process (right) [10].

The volume fractions nα of the constituents φα, where α ∈ {S,L,N}, are defined as the local ratios of the respective
partial volume elements dvα with respect to the bulk volume element dv of the overall aggregate φ as [10]

nα(x, t) =
dvα

dv
,

∑

α

nα(x, t) =
∑

α

ρα

ραR
= 1, (1)

where x is the position vector in the current configuration at time t. The volume fractions nα need to fulfil the saturation
constraint (1)2 permanently. Moreover, the partial density ρα = dmα/dv of a constituent φα can be related to its real density
ραR = dmα/dvα via its volume fraction nα (1)2, where dmα is the constituent’s mass element. Due to the volume fraction
concept, all geometric and physical quantities, such as motion, deformation and stress, are defined in the total control space.
Hence, they can be interpreted as the statistical average values of the real quantities.

3 Kinematics

The overall aggregate body B is defined as the connected manifold of material points Pα. At any time t, material points Pα

of all the constituents φα simultaneously occupy each spatial point x of the current configuration. These particles proceed
from different reference positions Xα at time t = to, which leads to individual motion, velocity x′

α and acceleration x′′
α fields

for each constituent

x = χα(Xα, t), x′
α =

dχα(Xα, t)

dt
, x′′

α =
d2χα(Xα, t)

dt2
. (2)

Moreover, a unique inverse motion function χ−1
α needs to exist for the motion function χα to be unique. The necessary and

sufficient condition for this is the existence of non-singular jacobian Jα

Xα = χ−1
α (x, t), if Jα := det

∂χα

∂Xα
̸= 0, (3)

where det(·) denotes the determinant operator. Moreover, the material deformation gradient Fα and its inverse F−1
α are defined

as Fα = ∂χα(Xα, t)/∂Xα =: Gradα x and F−1
α = ∂χ−1

α (x, t)/∂x = gradXα respectively. Here, Gradα(·) = ∂(·)/∂Xα

and grad(·) = ∂(·)/∂x. During deformation, the jacobian Jα is restricted to Jα = detFα > 0. For scalar field functions Ψ,
the material time derivative is defined as Ψ′

α(x, t) = ∂Ψ/∂t+ gradΨ · x′
α.

4 Balance equations

The balance equations for porous media are taken from the balance equations of the constituents φα in mixture theory. The
local equations of the balance of mass, the balance of momentum and the balance of moment of momentum for the constituents
φα read respectively as

(ρα)′α + ρα divx′
α = ρ̂α, ραx′′

α = divTα + ραbα + (p̂α − ρ̂αx′
α), Tα = (Tα)T . (4)

In equations (4), div(·) denotes the spatial divergence operator, Tα is the partial Cauchy stress tensor and b is the external
volume force per unit mass. ρ̂α represents the total mass production accounting for mass exchange or phase transitions
between the constituents φα. The total momentum production p̂α = ŝα + ρ̂αx′

α contains the direct momentum exchange ŝα
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resulting from the interaction force between the constituents φα as well as indirect parts resulting from the mass exchange ρ̂α.
The total production terms are restricted by

ρ̂S + ρ̂L + ρ̂N = 0, p̂S + p̂L + p̂N = 0. (5)

5 Assumptions

The system is investigated under the condition that all the constitutes φα are materially incompressible (ραR = const.). This
leads to the conclusion that volumetric deformations are only a result of a change in volume fractions nα. Moreover, the
nutrient and the liquid phases are assumed to be in the fluid phase. Therefore, both phases are assigned the same velocity x′

α

and pressure pα

x′
N = x′

L = x′
F , pN = pL = p. (6)

We assume that the liquid phase is not involved in the mass exchange. Using this assumption and equation (5)1

ρ̂L = 0 −→ ρ̂S = −ρ̂N . (7)

Furthermore, only isothermal processes are considered, energy transfer due to chemical reactions is neglected, accelerations
are excluded, and the internal structure of the thrombus is considered to be isotropic.

6 Constitutive modelling

The saturation condition (1)2, in addition, restricts the motion of incompressible constituents. Therefore, the set of unknown
quantities should be extended by the Lagrange multiplier p, which is identified as a pore pressure. Considering saturation
condition, the evaluation of entropy inequality in analogy to Coleman and Noll [18], and referring to de Boer [10] and
Ricken [19], we get restrictions for the constitutive relations of Tα, p̂S and ρ̂S .

6.1 Stress

The dependency of the Helmholtz free energy ψα for the solid, liquid and nutrient phases is considered as

ψS = ψS{nS , CS}, ψL = ψL{−}, ψN = ψN{−}, where CS = FT
SFS . (8)

We obtain the following constitutive relations for the stress with the above considerations, entropy inequality, equation (6),
and equation (1)2.

TS = −nSpI− (nS)2ρSR ∂ψ
S

∂nS
I+TS

E , where TS
E = 2ρSFS

∂ψS

∂CS
FT

S

TF = TL +TN = −(nL + nN )pI = −nF pI,

T = TS +TF = TS
E − (nS)2ρSR ∂ψ

S

∂nS
I− pI,

(9)

where I is the second-order identity tensor. The free energy function can be constructed in the following way

ψS =

(
nS

nSOS

)n
1

ρSOS

{µS

2
(I1 − 3)− µSln JS + λS

1

2
(ln JS)

2
}
, (10)

where µS and λS are the macroscopic Lamé constants and (·)(·)OS represents the initial value of (·) with respect to the solid
reference configuration. I1 := tr CS represents the first principal invariant of CS . From (9) and (10), the effective solid
Cauchy stress can be obtained

TS
E =

(
nS

nSOS

)(n+1) {
µS(BS − I) + λS(ln JS)I

}
, where BS = FSF

T
S . (11)

6.2 Filter Velocity

The seepage velocity wFS = x′
F − x′

S determines the motion of the fluid in relation to the solid. The interaction forces,
p̂F = p̂L+ p̂N = −p̂S , connect the motions of both solid and fluid. From the evaluation of entropy inequality, we obtain the
following relation

p̂F = p gradnF + SFwFS , (12)
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4 of 6 Section 2: Biomechanics

where SF is the permeability tensor between the solid and fluid. Using (12), (4)2, SF = αFS I for isotropic material, and
rearranging the equation, we get

nFwFS =
(nF )2

αFS

(
− grad p+ ρFRb− ρ̂F

nF
x′
S

)
,

(nF )2

αFS
=

(
nF

nFOS

)m
kFOS

γFR
=

(
nF

nFOS

)m
KS

OS

µFR
. (13)

The material parameter αFS can be described either by using initial Darcy’s permeability of fluid kFOS [m/s] and effective fluid
weight γFR [N/m3] or by using initial intrinsic permeability of solid KS

OS [m2] and dynamic fluid viscosity µFR [Ns/m2],
see (13)2, where m is a dimensionless parameter which accounts for the change of permeability [10, 20]. From equations (7)
and (13), we finally get the following relation for seepage velocity

nFwFS = −
(
nF

nFOS

)m
KS

OS

µFR

(
grad p− ρFRb− ρ̂S

nF
x′
S

)
. (14)

6.3 Mass exchange

According to (7), the mass exchange occurs between the solid and nutrient phases ρ̂S = −ρ̂N . No expert knowledge is
available for the formulation of free energy functions of liquid and nutrient phases. Therefore, following the evaluation of
the entropy inequality and using the postulations proposed by Ricken [19, 20], the mass supply term of the solid phase is
formulated. ρ̂S [kg/m3 s] is postulated as a function of wFS and nN

ρ̂S(wFS , n
N ) = C ρ̂SwFS

ρ̂SnN , ρ̂SwFS
(wFS) = exp

{
−∥wFS∥2

β1

}
, ρ̂SnN (nN ) = −exp

{
−(nN )2β2

}
+1, (15)

where C represents the maximum mass exchange, β1 and β2 are the material parameters reflecting the dependence of mass
exchange rate on the seepage velocity and nutrient volume fraction, see Figure 3.
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0

0.2
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S w

F
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0.4
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0.8

1

nN
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S n
N

Fig. 3: Mass exchange rate dependence on the seepage velocity wFS and nutrient volume fraction nN .

7 Numerical treatment and example

Considering the assumptions, balance equations, the saturation condition (1)2 (nL = 1−nS −nN ), and constitutive relations
from the preceding sections, we get a set of four unknown independent variables

U = U(x, t) =
{
uS , n

S , nN , p
}
, (16)

where uS is the displacement of the solid phase. Once this is concluded, the weak formulation for the governing equations
is formulated in the framework of the standard Galerkin procedure (Bubnov-Galerkin). We multiply the momentum balance
of the mixture, volume balance of the mixture, volume balance of the solid and volume balance of the nutrients with the test
functions δuS ,δp, δnS and δnN , respectively. As a result, the weak formulation of the triphasic model reads

• Momentum balance of mixture:

GuS
=

∫

Ω

(T) : grad δuS dv −
∫

Ω

(ρS + ρF ) b · δuS dv −
∫

Ω

ρ̂SwFS · δuS dv −
∫

Γt

t̄ · δuS da = 0, (17)
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• Volume balance of mixture:

Gp =

∫

Ω

divx′
S δp dv−

∫

Ω

nFwFS · grad δp dv+
∫

Ω

ρ̂S(
1

ρNR
− 1

ρSR
) δp dv+

∫

Γq

nFwFS · n δp da
︸ ︷︷ ︸

:=q

= 0, (18)

• Volume balance of solid:

GnS =

∫

Ω

(nS)′S δn
S dv +

∫

Ω

nS divx′
S δn

S dv −
∫

Ω

ρ̂S

ρSR
δnS dv = 0, (19)

• Volume balance of nutrients:

GnN =

∫

Ω

(
(nN )′S + nN divx′

S − ρ̂N

ρNR

)
δnN dv +

∫

Ω

gradnN · grad δnN dv

︸ ︷︷ ︸
:=r

−
∫

Ω

nNwFS · grad δnN dv +

∫

Γυ

nNwFS · n δnNda = 0.

(20)

In the weak formulation, from (17) - (20), t̄ is the external total stress vector acting on the Neumann boundary Γt, nFwFS ·n
is the fluid mass efflux on the Neumann boundary Γq and nNwFS · n is the nutrient mass efflux on the Neumann boundary
Γυ , where n is the outward-oriented unit surface normal. An artificial diffusion term (r) is added to the volume balance of
nutrients (20) to stabilise the transport equation [21].
The weak forms of balance equations are implemented in FE package PANDAS. We use the Taylor Hood elements for spatial
discretisation, where we use the quadratic shape functions for uS and linear shape functions for p, nS , and nN . Furthermore,
the implicit Euler time-integration method is used. In this two-dimensional numerical example, we simulate the formation
and growth of thrombus in TBAD. The geometry in the figure represents the false lumen where the mesh has 560 elements.
It consists of a solid matrix filled with fluid. The fluid is allowed to leave at the exit tear. The rest of the boundaries are
undrained surfaces. A boundary condition is applied for the fluid mass efflux q on the Neumann boundary Γq at the entry tear.
Also, the volume fraction of the nutrients nN is fixed at the entry tear. The bottom and the right edges are fixed in the y and x
directions, respectively, see Figure 4. Moreover, the simulation is performed with a time step size of 10 seconds. The material
parameters are given in Table 1 [19, 20, 22].

Entry tear
nN = 0.4
q = 0.1

Exit tear
p = 0.0

0.01 m

0.02 m

0.018 m

0.22 m

O x

y

Fig. 4: Boundary conditions and discretization of false lumen.

Parameter Value Unit

λS 0.0 N/m2

µS 1× 105 N/m2

µFR 1× 10−3 Ns/m2

kFOS 1× 10−6 m/s
C 5× 10−2 kg/sm3

ρSR 2× 103 kg/m3

ρFR 1× 103 kg/m3

ρNR 2× 103 kg/m3

nSOS 0.2 -
nNOS 0.4 -
β1 0.05 -
β2 5.0 -

Table 1: Parameters for thrombus growth.

In the example of thrombosis over a period of a week, Figure 5, the growth of the thrombus can be seen at different stages in
time. The entry and exit tears are marked in the figure. At time t = 0, the whole region has an initial solid volume fraction
of 0.2 because of the presence of subendothelial collagen, wall cells and activated platelets on the formation of the false
lumen. The fluid enters through the entry tear and leaves through the exit tear. As a result, the seepage velocity is high
in the middle region and low in the false lumen’s top and bottom regions. Also, it increases with time because of the less
space available, see Figure 5 (right). Due to the presence of nutrients and following the mass exchange formulation (15), the
process of thrombus formation begins, which can be compared to the formation of a platelet plug during primary haemostasis.
Thereafter, secondary haemostasis begins, forming a mesh by fibrin and platelets and a stable clot, lasting for a long period.
We have considered that at nS = 0.8, the thrombus is stable enough, and it increases further to form a permanent and stable
solid plug following secondary haemostasis. The reader is referred to Mohan [23] for a detailed explanation of thrombosis.
However, there is a singularity at the exit tear due to the sharp edges in the idealised geometry, which is a numerical artefact.
(cf. Figure 5).
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6 of 6 Section 2: Biomechanics

nS

(a) (b) (c)

∥wFS∥

(d) (e) (f)

Fig. 5: Change in solid volume fractions nS at time (a) t = 0 hours, (b) t = 84 hours and (c) t = 168 hours (left). Norm of the seepage
velocity at time (d) t = 0 hours, (e) t = 84 hours and (f) t = 168 hours (right).

8 Conclusions

A triphasic model has been developed for the growth of the thrombus. The Theory of Porous Media (TPM) is used to develop a
thermodynamically consistent model using a smeared model of solid and nutrient-rich fluid phases. The constitutive relations
are proposed based on the restrictions obtained by evaluating the entropy inequality. The mass exchange between the solid
and nutrient phase is formulated, which depends on the nutrient concentration and the seepage velocity.
There is a lack of availability of enough medical data and realistic parameters. However, the model can describe the thrombus
formation and growth process using the chosen parameters. The model can be expanded based on further findings and could
then be adapted for patient-specific cases.
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