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Abstract— This contribution presents the automatic 

segmentation of the lower jawbone (mandible) in humans’ 

computed tomography (CT) images with the support of trained 

deep learning networks. CT acquisitions from the mandible 

frequently include radiological artifacts e.g. from metal dental 

restorations, ostheosynthesis materials or include trauma 

related free pieces of bones with missing bone contour 

anatomy. As a result, manual outlining these slices to generate 

the ground truth for evaluating segmentation algorithms lead 

to massive uncertainties and results in significant 

interphysician disagreement. Simply excluding these slices is 

also not the option of choice, regarding the treatment outcome. 

Hence, we defined strict inclusion and exclusion criteria for our 

datasets to avoid subjectivity or occurring bias in the ground-

truth creation. Amongst others, datasets must display a 

complete physiological mandible without teeth. According to 

these data selection criteria such images are difficult to find 

since they originate from the clinical routine and therefore need 

a medical indication (such as trauma or pathologic lesions) to 

be provided as CT data. Furthermore, to prove the 

adequateness of our ground-truth, clinical experts segmented 

all cases twice manually, showing the great qualitative and 

quantitative agreement between them. Our dataset collection 

and the corresponding ground truth is an absolute novelty and 

the first serious evaluation of segmentation algorithms for the 

mandible. 

I. INTRODUCTION 

Deep learning [1] with neural networks is an increasingly 
important topic for research and economic purposes. 
Software giants use deep networks for the development of 
their latest technological gadgets. Daily examples are 
Facebook’s face detection, Apple’s speech recognition Siri or 
Google Translate, which all comprise deep learning 
algorithms [2]. 

The motivation of this contribution is to utilize deep 
learning networks for medical image processing and analysis, 
and create a more reliable ground-truth. In particular, the aim 
was to implement convolutional neural networks (CNNs) as 
well as to train and test them with computed tomography 
images from the clinical routine in order to enable an 
automatic segmentation of the lower jawbone. Automatic 
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segmentations are helpful, since a manual slice-by-slice 
segmentation is tremendously time-consuming [3]-[10]. 

To train CNNs during this work, ten completely 
anonymized CT datasets of the human head-neck region 
originating from the clinical routine were provided by the 
Department of Oral and Maxillofacial Surgery of the Medical 
University of Graz in Austria. Furthermore, two clinical 
experts segmented manually the lower jaw of the present CT 
images in order to generate the ground truths, which were 
regarded as valid segmentations and control group [11]. The 
lower jawbones were segmented twice in order to enable an 
impartial comparison between the algorithmic segmentation 
and the inter-observer variability. Ten CT datasets is a small 
amount to train a network efficiently and to attain a good 
generalization ability. However, due to the data selection 
criteria (see A. Data Acquisition) only ten datasets could be 
identified from the clinical routine in the last years, but this 
strict inclusion and exclusion criteria allow a valid ground 
truth generation and further an algorithmic segmentation of 
the whole mandible. In contrast, all previous works we are 
aware of have here two significant shortcomings: either they 
skip “faulty” slices, e.g. showing artefacts, or they try their 
best to segment them, even if the meaningfulness of these 
(manual) segmentations are at least questionable. 

Ibragimov et al. [12] presented in their work a tri-planar 
patch-based segmentation approach. Their goal was to 
segment automatically several organs of the head and neck 
region (inter alia the mandible) in CT datasets. For this 
purpose, they had 50 CT datasets at their disposal, which 
were manually segmented by clinical experts to produce the 
ground truth segmentations. Another approach to obtain an 
automatic segmentation is announced by Long et al. [13] in 
their contribution. Contrary to the previous presented work, 
they implemented a fully convolutional network (FCN), 
which produces an output of the same size as the input image. 
The output is, consequently, the direct pixel-wise prediction 
of the segmentation. 

The deep learning implementations of this work comprise 
classification as well as segmentation networks. The idea is 
to mark out the images, which show parts of the lower 
jawbone, with a trained classification net and to provide those 
slices to the segmentation networks. The reason for this two-
step implementation is that many CT slices occur, which 
don’t display the anatomical region of interest. Hence, 
various classification and segmentation networks were 
implemented as well as trained and tested with the deep 
learning framework TensorFlow [14] and its higher level 
application programming interfaces (API). The results show 
that the automatic segmentation of the mandible works 
adequately for the available CT datasets. 
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II. METHODS 

A. Data Acquisition 

For the segmentation process 45 CT-data sets were 
provided as DICOM files and collected during the clinical 
routine from a department of cranio-maxillofacial surgery in 
Austria. Only high resolution data sets (512x512) with slices 
not exceeding 1.0 mm with 0.25 mm pixel size and providing 
physiological, complete mandibular bone structures without 
teeth were included in the selection process. Further, no 
difference was made between atrophic and nonatrophic 
mandibular bones - both were included during the selection 
process. However, incomplete data sets consisting of 
mandibular structures altered by iatrogenic or pathological 
factors or fractured mandibles as well as data sets showing 
ostheosynthesis materials in the lower jaw were excluded in 
this trial. All data sets were acquired within a twelve month 
period (between 2013 and 2016). According to the inclusion 
criteria 20 CT-data sets were selected, 25 were excluded 
during the selection process in the clinical routine out of 
diagnosis and treatment reasons. From the 20 CT data sets, 
ten data sets (n=10, 6 male, 4 female) were further selected in 
a randomization process performed by a computer program 
(Randomizer

©
; https://www.randomizer.at; randomization for 

clinical and non-clinical trials), to form an experimental 
segmentation group. The control group consisted of objective 
created bone structure volumes of the lower jaw according to 
the selected ten data sets (ground truth). The Institution’s 
Ethical Review Board approved all experimental procedures 
involving human subjects. 

B. Classification of the CT slices 

The presented deep learning implementations of this 
section comprise a classification of the CT slices. The idea 
was to achieve a self-acting decision whether the mandible 
appears in an image or not, as many images occur in the CT 
datasets, that don’t show the lower jawbone. These CT slices 
should be eliminated with a trained classification network 
and consequently, the segmentation network was just trained 
with images that show parts of the lower jaw. Ibragimov and 
Xing [12] removed in their work also CT slices, that don’t 
include the mandible, from training and testing neural 
networks. They applied, however, geometrical methods for 
slice exclusion. The classification networks were 
implemented in a Python environment as well as the deep 
learning toolkit TensorFlow and its high-level API TFLearn 
[15] was utilized. The CNN, which offered the best 
performance, was selected for the further segmentation task. 

Before a training of classification networks could be 
accomplished, it was necessary to know the label of every 
image. These labels indicate which class an image is 
belonging to. In the course of this contribution, two classes 
exist: There is the case that the lower jawbone appears in a 
CT slice and alternatively, that the mandible doesn’t occur. 
The labels of the images were extracted from the ground truth 
segmentations. If a CT slice contains the mandible, its 
corresponding mask encompasses white pixels. Otherwise, 
the mask exhibits only pixel values of zero. Thus, it was 
possible to infer the classification label of a CT slice from its 
mask’s pixel values. 

During this work, classification networks with various net 
topologies were trained with four different sized datasets. 
Each dataset contained a diverse number of images, as there 
were different augmentation methods applied [16]. The first 
image set involved the initial CT images (1680 slices), the 
second one was enlarged with noisy images (6720 slices) and 
the third one with affine transformed ones (13440 slices). 
Dataset four covered both data augmentation types (18480 
slices). The affine transformations were applied separately 
from each other (for each slice separately). 

To produce meaningful results with a trained network, it 
was required to figure out optimal training and network 
parameters. Good classification accuracies were achieved 
with a max-pooling filter size of five, the learning rate was 
set to 0.00001 and the number of epochs per launched 
training was stated as 20, whereby each network was trained 
four times. Comparing all trained models according to their 
achieved loss values and accuracies, we marked out that the 
network with the topology of six convolutional and six 
maxpooling layers led to the best results. This network 
configuration was the deepest trained model. Moreover, this 
CNN comprises a fully connected layer with 1024 nodes and 
dropout was applied to this layer type with a rate of 0.8%. 
The number of generated feature maps was set to 64 for the 
second convolutional layer and to 32 for the remaining ones. 
The output layer exhibited two nodes, since each output unit 
delivers the class probability for an input image. Moreover, 
the convolutional filter size was set to seven and the images 
were down-sampled to a size of 50x50. Besides that, the best 
performing CNN was trained with the largest dataset four. 

After testing slices of a dataset with the classification net, 
the minimum and the maximum slice displaying the 
mandibular were established. These two slices build the 
limitation of the images that are utilized for the succeeding 
segmentations. 

C. Segmentation of the CT slices 

The implementation of the deep networks was conducted 
with TensorFlow and its high-level API TF-Slim [17]. Again, 
the Python interface of TensorFlow was utilized. The realized 
segmentation method follows the upsampling principle 
presented by Long et al. [13] in their Fully Convolutional 
Networks for Semantic Segmentation contribution as well as 
the contribution of Pakhomov et al. [18]. As already outlined, 
Long et al. [13] recommended a three-step training principle 
of a fully convolutional network. Figure 1 illustrates the 
workflow of the model implementations. 

 

Figure 1.  Workflow of the segmentation network implementations. The 
classification part was provided by the TF-Slim library, whereas the 

segmentation part was trained with the CT datasets during this work. 
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The first segmentation network is the FCN-32s, which is 
an adjustment of the VGG-16 net. The VGG-16 model [19] is 
originally trained for a classification with the ImageNet 
dataset of the ILSVRC 2014 challenge [20], whereby the 
weights for FCN-32s initialization were provided by 
Pakhomov et al. [18]. Moreover, the second segmentation net 
is the FCN-16s, which assumes weights of the trained FCN-
32s model. The third and last one is the FCN-8s, which is 
again initialized with the weights of the previous network. 

The first segmentation network, termed as FCN-32s, was 
implemented with a modification of the TF-Slim VGG-16 
model definition. After the application of input images to the 
VGG-16 model, the matrices of the feature maps have a side 
length of 1/32 of the original input. As a result, to gain a 
segmentation with the initial image size, the downsampled 
feature maps have to be upsampled with a factor of 32. 
Therefore, the FCN-32s net topology adds one upsampling 
layer to the VGG-16 model, whereby this new layer is trained 
from scratch (Figure 1). 

The FCN-16s network accomplishes upsampling with 
two additional layers, whereby the first upsampling is 
conducted with a factor of two. Contrary to the FCN-32s, the 
FCN-16s includes information from the down-sampling path 
of the VGG-16 architecture. For this purpose, the output of 
the max-pooling layer four is involved in the upsampling 
process by combining this information with the output of the 
first upsampling layer. The second and last upsampling step 
is conducted with a factor of 16 in order to attain a prediction 
with the original input size (see Figure 1). 

Apart from that, the FCN-8s model achieves upsampling 
with three additional layers. The first upsampling is 
conducted in the same manner as it was achieved with the 
FCN-16s network. Hence, the output of the VGG-16 model is 
delivered as an input to the first upsampling layer, which 
executes a resize with a factor of two. Moreover, the 
involvement of the fourth max-pooling layer is achieved in 
the same way as it was done for the FCN-16s network. The 
resize factor of the second upsampling layer exhibits, 
however, a value of two. Furthermore, the information of 
maxpooling layer three of the VGG-16 architecture is 
combined with the output of the second upsampling layer. 
Finally, to gain the original matrix size for the final 
segmentation prediction, an upsampling factor of eight is 
essential for the third upsampling step (see Figure 1). 

The presented segmentation architectures were trained 
with four different datasets. Two of the training sets (I and II) 
contain the original images, whereby the images of the first 
dataset are down-sampled to a size of 256x256. The other 
two datasets (III and IV) cover the original images and also 
artificially generated ones. Again, one dataset comprises the 
original sized images (IV), while the other one contains 
down-sampled CT slices (III). It has to be noticed that only 
slices, which show parts of the lower jawbone, were used to 
train the segmentation networks. Hence, the number of 
available training images reduces compared to the training 
data of the classification networks. The extraction of the 
slices, that don’t comprise the mandible, was executed 
manually via the expert segmentations. 

For training the segmentation networks, one image mask 
pair was used for the computations of the weight updates. On 
top of that, the number of epochs was set to ten for the three 
implemented networks, whereas the learning rate changed 
with the various topologies. The learning rate of the FCN-32s 
net had a value of 0.0001, while the rates of the FCN-16s and 
FCN-8s networks were set to 0.000001 and 0.0000001. As 
there was such a small amount of data available, it was also 
achievable to train the segmentation networks on a CPU. The 
consecutive training of the FCN-32s, the FCN-16s and the 
FCN-8s models took in total about one day and a half for the 
smaller sized datasets (I and II), while training with the 
datasets III and IV lasted about five days. 

To evaluate the predicted segmentation results, the Dice 
scores were calculated for each patient dataset. Therefore, the 
image processing platform MeVisLab was used [21]-[25]. As 
expected, the segmentation network, which was trained with 
the largest dataset offered the best Dice coefficients. 
Moreover, the FCN-8s showed a better performance than the 
FCN-16s and the FCN-32s models. 

III. RESULTS 

Figure 2 displays classified images (50x50) and their 
predicted probabilities. The class predictions were 
accomplished with the best performing classification model. 
This trained network delivered an accuracy of one for the 
training dataset, whilst the test accuracy had a value of 
0.9877. 

Apart from that, two clinical experts generated ground 
truth contours for supervised training, whereby the ground 
truths of clinical expert A were just utilized for training. 
Nevertheless, the inter-observer variability was calculated 
between those manual segmentations. Therefore, the Dice 
coefficients were computed for each patient’s dataset. 
Averaging these values shows that the mean Dice score has a 
value of 0.9362 and the standard deviation is 0.0098. 
Additionally, the FCN-8s net, which was trained with the 
largest dataset, delivers a mean Dice coefficient of 0.9203 
and a standard deviation of 0.0140 for the training dataset. 
Finally, the Dice scores were computed and averaged for test 
images. The mean Dice coefficient showed a value of 0.8964 
and a standard deviation of 0.0169. Hence, the segmentation 
metrics of the training images are a bit worse than the inter-
observer variability, whilst the test metrics decrease a bit 
more. 

 
Figure 2.  Test images (50x50) and their predicted classes. The network 

exhibited a topology of six convolutional and six max-pooling layers. 

Training was accomplished with the largest sized dataset. 
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Figure 3 illustrates a CT slice, its ground truth and 
predicted segmentations, which were generated with the 
FCN-32s, the FCN-16s and the FCN-8s topology. Beyond 
that, Figure 4 shows another CT slice, its ground truth and 
the predicted probabilities of the three network architectures. 
The networks used for those predictions were trained with the 
largest dataset and the original image sizes. Both figures 
indicate that the predictions improve with the involvement of 
information of the VGG-16 model. The segmentations of the 
FCN-32s architecture seem to be awkward, whilst the FCN-
8s predictions are smoother. 

 
Figure 3.  Comparison of a CT slice (512x512), its ground truth and the 

predicted segmentations. The segmentations were forecasted with the FCN-
32s, the FCN-16s and the FCN-8s models, which were trained with dataset 

IV. 

 

Figure 4.  Depiction of a CT slice, its ground truth and the predicted 
probability maps. The maps were forecasted with the networks trained with 

dataset IV. The brighter the voxels, the more likely they are part of the 

mandible (M), whilst the blue color implies that there is probably no 
mandible (NM) appearing. 

IV. CONCLUSION 

To bring up to mind, a MeVisLab [26]-[29] network and a 

macro module were generated to process and enlarge the 

head-neck CT datasets during this contribution. Moreover, 

the ultimate objective was to implement deep networks, 

which permit an automatic segmentation of the mandible. 

Therefore, classification networks were trained in order to 

distinguish whether a slice comprises the lower jawbone or 

not and consequently, segmentation networks computed the 

algorithmic demarcations within these slices. All networks 

were trained and tested with images exported by the 

MeVisLab [30]-[32] realizations. 

On the whole, the most essential problem, which must be 

solved for additional deep learning implementations in 

medicine, is the lack of available images. If there are 

databases utilized, which comprise a huge amount of 

images, it must be kept in mind that the ground truths must 

be created manually by experts and must be proven for their 

validity for a supervised training. To overcome this problem 

the utilization of overlaid images may be an option (e.g. 

registration of nuclear medical images - like PET - on CT or 

MR images) [33]. For instance, cancerous tissue might be 

segmented in CT slices, whereby the nuclear medical 

information corresponds to the ground truths, as the tracers 

accumulate in tumors. If the problems of the lack of 

available data are resolved, more detailed investigations may 

be feasible in the field of network architectures or parallel 

GPU training. To conclude, the implemented networks of 

this contribution were an explanatory step for the application 

of deep models in the medical domain and for the first time 

on a data collection with a valid ground truth, but for a usage 

in clinical routine a training and also a testing with a large 

number of images is essential. 
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