Understanding Phonon-Related Properties in Metal-Organic Frameworks for Controlling Their Mechanical and Thermal Characteristics

Tomas Kamencek

Institute of Solid State Physics &

Institute of Physical and Theoretical Chemistry

<u>Metal-Organic Frameworks (MOFs)</u>

Microporous Mesoporous Mater., 2004, 73,3

THOUSANDS of m² per gramme of the material

Gas storage	Catalysis	Gas separation	Encapsulation	Functional decives
-------------	-----------	----------------	---------------	--------------------

DocDay 09-2021

Yaghi, Kalmutzki, Diercks: Introduction to Reticular Chemistry, Wiley VCH (2019)

Institute of Solid State Physics and Institute of Physical and Theoretical Chemistry

Properties in Metal-Organic Frameworks

DocDay 09-2021

Relevant Properties of MOFs

Phonons determine many of the relevant properties of a MOF!

Γ -Phonons

- Characterisation: Raman/IR
 Spectroscopy
- Phase Identification

Band Structures

- Vibrational Free Energy / Entropy
- Elastic Constants
- Band Dispersion (Group Velocities)

Anharmonicities

- Thermal Expansion
- Phonon Lifetimes
- Thermal Conductivity

Phonons in (Isoreticular) MOFs

Phys. Rev. Mater. **2019**, 3, 116003

Elastic Properties and Their Atomistic Origins in Variants of MOF-74

> J. Phys. Chem. C 2021, in press

Thermal Expansion and Anharmonic Properties in MOF-74

In preparation

Phonons in (Isoreticular) MOFs

Kamencek, Bedoya-Martínez, and Zojer; Phys. Rev. Mater. 2019, 3, 116003

Goals of the Study

Graz

• Systematic analysis of the phonon band structures as a function of

- The metal ions (Mg²⁺, Ca²⁺)
- The linker (\rightarrow IRMOF-1, IRMOF-130, IRMOF-14)
- In which frequency regimes can one find certain phonon modes?

(C)

HO

OH

IRMOF-130

OH

IRMOF-14

Methods

D.F TB

Aradi et al. J. Phys. Chem. A,

2007, 111 (26), 5678

PHONOPY

https://atztogo.github.io/phonopy/

Togo and Tanaka, *Scr. Mater.,* **2015,** 108, 1

Kresse and Hafner, *Phys. Rev. B*, **1993**, 47 (1), 558 Kresse and Hafner, *Phys. Rev. B*, **1994**, 49 (20), 14251

D3-BJ correction:

Grimme et al., J. Chem. Phys., 2010, 132 (15), 154104; Grimme et al., J. Comput. Chem., 2011, 32 (7), 1456

DocDay 09-2021

Which Phonon Bands to Expect?

Projected Density of States: Exchanging Metals

Low frequency region

- dominated by O and Mg/Ca
 Higher frequencies
- C contributions
- Sharp peaks

Mg→Ca: Modes shifted to lower frequencies

Which Phonon Bands to Expect?

Projected Density of States: Exchanging Linkers

colouring: C O H

Increasing Complexity of the Linker: More Low-Energy Linker Modes

Increasing Complexity of the Linker: Quantitative Trends

Increasing Complexity of the Linker: Quantitative Trends

Elastic Properties and Their Atomistic Origins in Variants of MOF-74

Kamencek and Zojer; J. Phys. Chem. C. 2021, in press

Why Elastic Properties?

DocDay 09-2021

Institute of Solid State Physics and Institute of Physical and Theoretical Chemistry

2 Lattice Paramters (*a*,*c*), rhombohedral Bravais lattice

colouring: Zn C O H

Young's Modulus in MOF-74(Zn)

= mechanical resistance to uniaxial strain

- Local minimum in *z*-direction
- Smaller in *xy*-plane
- 3 pronounced lobes (±48° inclined with respect to xy-plane)

Young's Modulus in MOF-74(Zn) (top view)

Young's Modulus in MOF-74(Zn) (side view)

- Maxima nearly aligned with the long molecular axes of the linkers (~5° difference)
- Linker backbone: strong covalent C-C bonds

Mechanisms at the Microscopic Level

- Applying compressive stress in *z*-direction
 - Shrinkage along channel
 - Lateral expansion

- Nodes grow laterally
- Nodes rotate
- Linker inclination increases

Structure-to-Property: Microscopic Changes to Macroscopic Properties

Adsorbates	Metal lons	Linker Molecules
• Water	 Zn²⁺ Ca²⁺ Mg²⁺ Be²⁺ Mixtures 	 1 Phenylene ring 2 Phenylene rings 3 Phenylene rings

Structure-to-Property: Microscopic Changes to Macroscopic Properties

Adsorbates	Metal lons	Linker Molecules
<section-header></section-header>	 Zn²⁺ Ca²⁺ Mg²⁺ Be²⁺ Mixtures 	 1 Phenylene ring 2 Phenylene rings 3 Phenylene rings

Effect of Adsorbed Water

- Water at uncoordinated metal sites
- H-bridges
- Stabilize the node

➔Young's Modulus in zdirection increases compared to dehydrated V

Hydrogen bridges make lateral expansion of nodes more difficult

Dehydrated

+6 H₂0 per unit cell

Water increases E_z and after first layer also E_x

Metal Exchange: General Trends but Individual Deviations

Metal Exchange: General Trends but Individual Deviations

Metal Exchange: Young's Modulus Changes Also Qualitatively Ca: Young's modulus in z-direction is a maximum Zn Ca Young's Modulus / Gra 33 38 28 22

Different Deformations upon *z***-Stress**

Different Deformations upon *z***-Stress**

Sound Velocity Distributions Change

Elastic Properties - Sound Velocities (Christoffel Equations)

Longitudinal Acoustic Sound Velocities (Long Wavelength Limit)

Manipulation of Sound Velocity Distributions

Longitudinal Acoustic Sound Velocities (Long Wavelength Limit)

Elastic Properties - Sound Velocities (Christoffel Equations)

Thermal Expansion and Anharmonic Properties in MOF-74

Kamencek and Zojer; in preparation

Thermal Expansion and Anharmonic Properties in MOF-74

TU Institute of Solid State Physics and Institute of Physical and Theoretical Chemistry

Goals and Motivation

- Thermal expansion is an anharmonic effect
- Thermal expansion
 → thermal mismatch (heteroepitaxy)
- Origin of thermal expansion in MOFs not fully clear (different hypotheses)
- High level of insight: Grüneisen theory of thermal expansion

Institute of Solid State Physics and Institute of Physical and Theoretical Chemistry

Real-Life MOF-74(Zn)

Large mass mismatch between metals and linkers leads to complex phonon properties

Heavier metals shift phonons to lower frequencies

More complex linkers introduce more low-lying linker deformation modes

Inter-system trends of Γphonon frequencies can be observed based on classical arguments

Phys. Rev. Mater. **2019**, 3, 116003

Maxima of Young's Modulus in MOF-74(Zn) are found along the (inclined) zigzag directions

(The first layer of) water increases mostly Young's Modulus along the pore

The trend of ion exchange can be estimated with a simple spring model

Individual deviations from the trends must be analysed in detail exploiting atomic deformations

hem.

Thermal expansion in MOF-74(Zn) is extremely low (XRD and Grüneisen Theory)

Most relevant contributions to the thermal expansion can be found for phonons < 3 THz

The acoustic phonons (especially in ΓF and ΓP) show the most pronounced anharmonicities

In preparation

Acknowledgements

- Supervisors: Paolo Falcaro and Egbert Zojer
- Falcaro Group @ IPTC and
- Advanced Modelling Team @ IF
- Austrian Academy of Sciences: DOC Fellowship
- Lead Project (LP-03) Porous Materials @ Work

Grant No. 25783

Graz

 Computational Resources: VSC, High-Performance Computing TU Graz (dCluster, aCluster)

Goals and Motivation

- Thermal expansion is an anharmonic effect
- Thermal expansion
 → thermal mismatch (heteroepitaxy)
- Origin of thermal expansion in MOFs not fully clear (different hypotheses)
- High level of insight: Grüneisen theory of thermal expansion

Grüneisen Theory of Thermal Expansion

Real-Life MOF-74(Zn)

Large mass mismatch between metals and linkers leads to complex phonon properties

Heavier metals shift phonons to lower frequencies

More complex linkers introduce more low-lying linker deformation modes

Inter-system trends of Γphonon frequencies can be observed based on classical arguments

Phys. Rev. Mater. **2019**, 3, 116003

Maxima of Young's Modulus in MOF-74(Zn) are found along the (inclined) zigzag directions

zigzag

(The first layer of) water increases mostly Young's Modulus along the pore

The trend of ion exchange can be estimated with a simple spring model

Individual deviations from the trends must be analysed in detail exploiting atomic deformations

> J. Phys. Chem. 2021, accepted

Thermal expansion in MOF-74(Zn) is extremely low (XRD and Grüneisen Theory)

Most relevant contributions to the thermal expansion can be found for phonons < 3 THz

The acoustic phonons (especially in **FF** and **FP**) show the most pronounced anharmonicities

In preparation