

From Macro to Nano: AFM and optical spectroscopy

Elisabeth Anna Schöffmann, 28.02.2022

Europäische Union Investitionen in Wachstum & Beschäftigung. Österreich

Kompetenzzentrum Holz GmbH

KPLUS

Introduction

Elisabeth Anna Schöffmann

- BSc and MSc at TU Graz
- Since 07/2017 project manager at Wood K plus in St. Veit an der Glan
- Start dissertation project 10/2019 with invest of a new device (AFM)

Wood Kplus Area 3 – St.Veit/Glan

- Headquarter at Linz
- Industry-related research
- Surface characterization
- Invention of new surface characterization methods
- Expertise in IR-spectroscopy and multivariate data analysis

Agenda

- Overview and Theory
 - AFM
 - IR-Microscope
 - MVA/PCA
- Research Question/ Problem
- Work packages/ Key problems
- Outlook

Atomic Force Microscope

Measuring principle:

- Mechanical imaging instrument
- Cantilever (needle on oscillating leaf spring)
- Scans over the sample surface
- Laser alignment
- Topography data

Keyence Digitalmikroskop VHX 950F

AFSEM from Getec (now QD-Microscopy)

Vibration damping plate

The AFM from QD-microscopy (former KPLUS GETec)

- For the integration into a SEM developed
- No vacuum with our setup
- Combination of AFM and microscopy
- No laser adjustment needed due to self-sensing cantilever technology
- Easy handling
- Max. measurement range
 30 x 30 µm

AFM installed on the digital microscope

IR-spectroscopy - Basics

- Optical spectroscopy wide range NIR, MIR, UV-VIS
- Focus on MIR: 4000-600 cm⁻¹
- Exitation of molecular vibrations
- Vibrational transitions energies are characteristic for functional groups
- Good chemical classification and differentiation

IR-microscope PerkinElmer Spotlight 400

- Transmission and reflection
 possible
- Spectral range: 4000-720 cm⁻¹
- Spatial resolution: 3,1 µm
- Spectral resolution: 4 cm⁻¹
- Measurement area in ATR imaging max. 400 x 400 µm
- Integrated PCA analysis
- Chemical characterization of solid samples and small defect areas

KPIUS

Multivariate Analysis (MVA) - Basics

- More than 4000 spectra from IR-microscopy
- Data reduction principle component analysis
- Classification/clustering of data
- Translation one spectrum into one data point

KPLUS

KPLUS

Samples- Macroscopic

Lacquer-coated wood-based panel

Melamine-coated wood-based panel

Impregnate

Printed raw paper

Coated paper

Samples-Microscopic

Printed raw paper

Impregnate

Melamine-coated surface

Lacquer-coated surface

Melamine-coated surface

Melamine-coated surface

Research Questions

Overall goal: correlation of macroscopic, microscopic and nanoscopic properties

- 1. Sample preparation: How are valid AFM- & IRmicroscopy measurements gained?
- 2. What information can be obtained with AFM & IRmicroscopy?
- **3**. Are differences between systematically produced samples visible? How can they be correlated?

1) Sample Preparation of wood-based materials and papers

(Publication in progress)

Sample Preparation of wood-based materials and papers

- Traditional sample preparation
 - Cutting for surface analysis
 - Grinding and polishing
- Challenges for micro to nanoanalysis
 - Get small, but representative samples
 - Embedding \rightarrow porous structures
 - Getting a flat surface \rightarrow ultramicrotomy
 - Wet cutting \rightarrow swelling

After cutting (size 10 x 10 cm)

After grinding and polishing (without and with embedding)

Swelling of raw paper after wet cutting

Sample preparation and analysis strategy

Silicon embedding molde, Epofix

Trimming with razor blade

Ultramicrotome with trim knife and histo knife

AFM on digital microscope

IR-microscope

Sample cross-sections - Microscopic

Lacquer-coated wood-based material

Pigmented impregnate

Printed raw paper

KPLUS

2) What characteristic chemical and physical information of wood-based materials, papers and composites can be obtained with AFM and IR-microscopy?

Sample cross-sections - AFM measurements

Lacquer-coated wood-based material

Pigmented impregnate

Lacquer-coated wood-based material

Melamine-coated wood-based material

Sample cross-sections – IR microscopy

KPLUS

3) Are differences between systematically produced samples visible? How can they be correlated?

Standard surface testing methods – macroscopic values

Acid test

Water steam resistance

Porosity test

Scratch resistance

KPLUS

Standard surface testing methods – macroscopic values

3 different pressing temperatures for different macroscopic values

• 130°C, 140°C, 185°C

Test method	Sample 185°C	Sample 140°C	Sample 130°C
Acid test	Good (4,5)	Good (4,5)	Okay (3)
Porosity	Bad to ok (2)	Okay (2,5)	Bad (1,5)
Water steam test (Gloss)	Good (4 <i>,</i> 5)	Good (4,5)	Bad (2,5)
Scratch resistance [N]	Very good (>5 N)	Okay (3 N)	Bad (2 N)

KPIUS

Macro to Nano – Microscopy Evaluation of KPLUS the Surface and macroscopic tests

Sample 130°C, 400x

Sample 185°C, 400x

Macro to Nano – Microscopy Cross-sections

Comparison of the sample cross-sections including the measured resin layer thickness over the paper

Macro to Nano – impregnates and pressed KPLUS samples

PCA pressed samples (after UVN, groups observable)

PCA Isotherm impregnate (3 temperatures), after UVN

Loadings plot pressed samples (blue: PC1, red: PC2)

Outlook

- Force Distance Curve Evaluation
- End-correlation macro to micro to nano
- Publication of obtained results

Thank you for your attention!

Questions?

Kontakt: Kompetenzzentrum Holz GmbH Altenberger Straße 69 A-4040 Linz

Tel.: +43 (0)732 2468 6750 Fax: +43 (0)732 2468 6755

E-Mail: zentrale@wood-kplus.at Homepage: www.wood-kplus.at