Correlated materials modelling: The example of magnetism in Ba_2YIrO_6

Hermann Schnait

arXiv:2202.10794

- Periovskites ABO₃
 - A: (mostly) alkaline earth metal (Sr, Ba)
 - B: transition metal (+4 charge, e.g. 5d⁵ for Ir in SrIrO₃)

- Periovskites ABO₃
 - A: (mostly) alkaline earth metal (Sr, Ba)
 - B: transition metal (+4 charge, e.g. $5d^5$ for Ir in SrIrO₃)
- Double Perovskites A₂BB'O₆
 - Longer B-B distance

- Periovskites ABO₃
 - A: (mostly) alkaline earth metal (Sr, Ba)
 - B: transition metal (+4 charge, e.g. $5d^5$ for Ir in SrIrO₃)
- Double Perovskites A₂BB'O₆
 - Longer B-B distance
 - Freedom to change B-site ionization
- $Ba_2YIrO_6 \rightarrow 4$ electrons in Ir d-shell

- Periovskites ABO₃
 - A: (mostly) alkaline earth metal (Sr, Ba)
 - B: transition metal (+4 charge, e.g. $5d^5$ for Ir in SrIrO₃)
- Double Perovskites A₂BB'O₆
 - Longer B-B distance
 - Freedom to change B-site ionization
- $Ba_2YIrO_6 \rightarrow 4$ electrons in Ir d-shell
- Two effects at play:
 - Crystal Field splitting
 - Spin-Orbit coupling

 $H_{\rm SOC} = \zeta \left(\boldsymbol{L} \cdot \boldsymbol{S} \right)$

Sr₂IrO₄ (5d⁵) [1] [1] B. Kim et al., PRL **101**, 076402 (2008)

 $H_{\rm SOC} = \zeta \left(\boldsymbol{L} \cdot \boldsymbol{S} \right)$

 $Ba_2 Y IrO_6 (5d^4)$

BUT: In Experiment magnetic!

- Magnetic moment $\mu_{eff} \approx 0.16 0.63 \mu_{B}$
 - From Curie-Weiss fits [8, 17], muon-spin relaxation [17], RIXS [18]
 - No ordering down to 0.4 K [8]

[8] T. Dey et al., PRB **93**, 014434 (2016) [17] A. Nag et al., PRB **98**, 014431 (2018) [18] A. Paramekanti et al., PRB **97**, 235119 (2018) [21] J. Terzic et al., PRB **96**, 064436 (2017) For a full list of references see arxiv-link 4 / 22

- Magnetic moment $\mu_{eff} \approx 0.16 0.63 \mu_{B}$
 - From Curie-Weiss fits [8, 17], muon-spin relaxation [17], RIXS [18]
 - No ordering down to 0.4 K [8]
 - Cause of moment not clear: intrinsic vs. extrinsic

[8] T. Dey et al., PRB **93**, 014434 (2016) [17] A. Nag et al., PRB **98**, 014431 (2018) [18] A. Paramekanti et al., PRB **97**, 235119 (2018) [21] J. Terzic et al., PRB **96**, 064436 (2017) For a full list of references see arxiv-link 4 / 22

- Magnetic moment $\mu_{eff} \approx 0.16 0.63 \mu_{B}$
 - From Curie-Weiss fits [8, 17], muon-spin relaxation [17], RIXS [18]
 - No ordering down to 0.4 K [8]
 - Cause of moment not clear: intrinsic vs. extrinsic

Intrinsic:	Extrinsic:
- J=0 + excitons	J=0 bulk with
- J≠0	magnetic impurities

[8] T. Dey et al., PRB 93, 014434 (2016)
[17] A. Nag et al., PRB 98, 014431 (2018)
[18] A. Paramekanti et al., PRB 97, 235119 (2018)
[21] J. Terzic et al., PRB 96, 064436 (2017)
For a full list of references see arxiv-link
4 / 22
arXiv:2202.10794

- Magnetic moment $\mu_{eff} \approx 0.16 0.63 \mu_{B}$
 - From Curie-Weiss fits [8, 17], muon-spin relaxation [17], RIXS [18]
 - No ordering down to 0.4 K [8]
 - Cause of moment not clear: intrinsic vs. extrinsic

[8] T. Dey et al., PRB **93**, 014434 (2016) [17] A. Nag et al., PRB **98**, 014431 (2018) [18] A. Paramekanti et al., PRB **97**, 235119 (2018) [21] J. Terzic et al., PRB **96**, 064436 (2017) For a full list of references see arxiv-link 4 / 22

- Magnetic moment $\mu_{eff} \approx 0.16 0.63 \mu_{B}$
 - From Curie-Weiss fits [8, 17], muon-spin relaxation [17], RIXS [18]
 - No ordering down to 0.4 K [8]
 - Cause of moment not clear: intrinsic vs. extrinsic
- Terzic *et al.* [21]:
 - $\mu_{\rm eff} \approx 1.44~\mu_{\rm B}$
 - Long range ordering below 1.7 K

 [8] T. Dey et al., PRB 93, 014434 (2016)

 [17] A. Nag et al., PRB 98, 014431 (2018)

 [18] A. Paramekanti et al., PRB 97, 235119 (2018)

 [21] J. Terzic et al., PRB 96, 064436 (2017)

 For a full list of references see arxiv-link

 4 / 22

arXiv:2202.10794

- Magnetic moment $\mu_{eff} \approx 0.16 0.63 \mu_{B}$
 - From Curie-Weiss fits [8, 17], muon-spin relaxation [17], RIXS [18]
 - No ordering down to 0.4 K [8]
 - Cause of moment not clear: intrinsic vs. extrinsic
- Terzic *et al.* [21]:
 - $\mu_{\rm eff} \approx 1.44~\mu_{\rm B}$
 - Long range ordering below 1.7 K

What we do: Modelling on computer - "in-silico"

[8] T. Dey et al., PRB 93, 014434 (2016)
[17] A. Nag et al., PRB 98, 014431 (2018)
[18] A. Paramekanti et al., PRB 97, 235119 (2018)
[21] J. Terzic et al., PRB 96, 064436 (2017)
For a full list of references see arxiv-link
4 / 22
arXiv:2202.10794

Density Functional Theory (DFT) $H_{\rm BO} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \frac{1}{2} \sum_{ij,i\neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} - \sum_{i} V_{c}(\mathbf{r}_{i})$

Kinetic energy

Electron-Electron repulsion

Crystal potential

Density Functional Theory (DFT)

$$H_{\rm BO} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \frac{1}{2} \sum_{ij,i\neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} - \sum_{i} V_{c}(\mathbf{r}_{i})$$

Kinetic energy Electron-Electron repulsion

Crystal potential

Hohenberg Kohn Theorem: $\psi(\boldsymbol{r}_1 \dots, \boldsymbol{r}_N) \leftrightarrow n(\boldsymbol{r})$

Hohenberg Kohn Theorem: $\psi(\boldsymbol{r}_1 \dots, \boldsymbol{r}_N) \leftrightarrow n(\boldsymbol{r})$

Kohn Sham DFT: Effective one-particle model to find n(r)

Kinetic energy

Electron-Electron repulsion

Crystal potential

Hohenberg Kohn Theorem: $\psi(\boldsymbol{r}_1 \dots, \boldsymbol{r}_N) \leftrightarrow n(\boldsymbol{r})$

Kohn Sham DFT: Effective one-particle model to find n(r)

BUT: Iridium, open d shell \rightarrow Correlations!

Localized electrons (d, f shell) \rightarrow strong repulsion

Localized electrons (d, f shell) \rightarrow strong repulsion

Metal-Insulator transitions,

arXiv:2202.10794

6/22

Localized electrons (d, f shell) \rightarrow strong repulsion

Metal-Insulator transitions,

complex phase spaces, ...

[Kotliar et al., Physics Today 57, 3, 53 (2004)]

6 / 22

arXiv:2202.10794

Localized electrons (d, f shell) \rightarrow strong repulsion

Metal-Insulator transitions,

complex phase spaces, ...

In short:

Single particle picture not justified anymore!

[Kotliar et al., Physics Today 57, 3, 53 (2004)]

arXiv:2202.10794

$\text{DFT} \rightarrow \text{Local Model}$

From bands to local levels

$\text{DFT} \rightarrow \text{Local Model}$

From bands to local levels

$\mathsf{DFT} \to \mathsf{Local} \ \mathsf{Model}$

From bands to local levels

Green's function ("Propagator")

 $G^{r}(t) = -i\Theta(t)\left\langle \left\{ c(t), c^{\dagger}(0) \right\} \right\rangle$

(additional orbital / spin / site indices)

Green's function ("Propagator")

 $G^{r}(t) = -i\Theta(t)\left\langle \left\{ c(t), c^{\dagger}(0) \right\} \right\rangle$

(additional orbital / spin / site indices)

Link to experiment: Spectral function

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} \left\{ G(\omega) \right\}$$

[R. Mattuck: A Guide to Feynman Diagrams]

Green's function ("Propagator")

 $G^{r}(t) = -i\Theta(t)\left\langle \left\{ c(t), c^{\dagger}(0) \right\} \right\rangle$

(additional orbital / spin / site indices)

Link to experiment: Spectral function

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} \left\{ G(\omega) \right\}$$

[R. Mattuck: A Guide to Feynman Diagrams]

Green's function ("Propagator")

 $G^{r}(t) = -i\Theta(t)\left\langle \left\{ c(t), c^{\dagger}(0) \right\} \right\rangle$

(additional orbital / spin / site indices)

Link to experiment: **Spectral function**

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} \left\{ G(\omega) \right\}$$

[R. Mattuck: A Guide to Feynman Diagrams]

Green's function ("Propagator")

 $G^{r}(t) = -i\Theta(t)\left\langle \left\{ c(t), c^{\dagger}(0) \right\} \right\rangle$

(additional orbital / spin / site indices)

Link to experiment: **Spectral function**

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} \left\{ G(\omega) \right\}$$

[R. Mattuck: A Guide to Feynman Diagrams]

8/22

arXiv:2202.10794

Green's function ("Propagator")

 $G^{r}(t) = -i\Theta(t)\left\langle \left\{ c(t), c^{\dagger}(0) \right\} \right\rangle$

(additional orbital / spin / site indices)

Link to experiment: **Spectral function**

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} \left\{ G(\omega) \right\}$$

 \rightarrow Dynamical Mean-Field theory

[R. Mattuck: A Guide to Feynman Diagrams]

Green's function ("Propagator")

 $G^{r}(t) = -i\Theta(t)\left\langle \left\{ c(t), c^{\dagger}(0) \right\} \right\rangle$

(additional orbital / spin / site indices)

Link to experiment: **Spectral function**

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} \left\{ G(\omega) \right\}$$

 \rightarrow **Dynamical** Mean-Field theory

arXiv:2202.10794

8/22

Classical mean field theory

Classical mean field theory

Hubbard model (Lattice)

Hubbard model (Lattice)

Anderson impurity model (AIM)

Hubbard model (Lattice)

 $G_{\text{loc}}(z) = \sum_{\boldsymbol{k}} \left[z - \epsilon_{\boldsymbol{k}} - \sum_{\text{latt}} (\boldsymbol{k}, z) - \mu \right]^{-1}$

Anderson impurity model (AIM)

$$G_{\rm imp}(z) = \left[z - H_{\rm loc} - \sum_{\rm imp}(z) - \Delta(z)\right]^{-1}$$

$$(\Delta(z) \text{ contains } V_i, \epsilon_i)$$

Hubbard model (Lattice)

 $G_{\text{loc}}(z) = \sum_{\boldsymbol{k}} \left[z - \epsilon_{\boldsymbol{k}} - \sum_{\text{latt}} (\boldsymbol{k}, z) - \mu \right]^{-1}$

Anderson impurity model (AIM)

$$G_{\rm imp}(z) = \left[z - H_{\rm loc} - \sum_{\rm imp}(z) - \Delta(z)\right]^{-1}$$

$$(\Delta(z) \text{ contains } V_i, \epsilon_i)$$

GOAL: Set $\Delta(z)$ in a way, that local Green's function is reproduced

Hubbard model (Lattice)

 $G_{\text{loc}}(z) = \sum_{\boldsymbol{k}} [z - \epsilon_{\boldsymbol{k}} - \Sigma_{\text{latt}}(\boldsymbol{k}, z) - \mu]^{-1}$

Anderson impurity model (AIM)

BUT: AIM not trivial!

Impurity Solvers

Different algorithms available

Solve AIM:
$H_{ m loc}, \Delta(z), H_{ m int} \Rightarrow G_{ m imp}(z), \Sigma_{ m imp}(z)$
(linked via Dyson's equation)

Impurity Solvers

Different algorithms available

- Quantum Monte-Carlo (QMC)
 - Continous hybridization (inf. bath sites)
 - Finite Temperatures
 - Sign problem

Impurity Solvers

Different algorithms available

- Quantum Monte-Carlo (QMC)
 - Continous hybridization (inf. bath sites)
 - Finite Temperatures
 - Sign problem
 - **BUT:** Bad scaling down to T = O(1K)!

- Discrete bath sites \rightarrow Many-body Hamiltonian
 - T = 0 ground state

- Discrete bath sites \rightarrow Many-body Hamiltonian
 - T = 0 ground state
- Exact Diagonalization (ED), e.g. Lanczos
 - Exponential Scaling
 - Only rough bath discretization possible

- Discrete bath sites \rightarrow Many-body Hamiltonian
 - T = 0 ground state
- Exact Diagonalization (ED), e.g. Lanczos
 - Exponential Scaling
 - Only rough bath discretization possible

[Bauernfeind et.al, PRX 7, 031013 (2017)]

- Discrete bath sites \rightarrow Many-body Hamiltonian
 - T = 0 ground state
- Exact Diagonalization (ED), e.g. Lanczos
 - Exponential Scaling
 - Only rough bath discretization possible
- Some relief: Matrix Product States (MPS)
 - Allows to reduce matrix dimensions
 - DMRG, Time evolution \rightarrow Use as Solver
 - But: (quasi) 1D structure (1 orbital)

[Bauernfeind et.al, PRX 7, 031013 (2017)]

13/22

arXiv:2202.10794

- O(100) bath sites per orbital
- DMRG and time evolution possible
- SOC: Off-diagonal hybridization

- O(100) bath sites per orbital
- DMRG and time evolution possible •
- SOC: Off-diagonal hybridization

14/22

- O(100) bath sites per orbital
- DMRG and time evolution possible
- SOC: Off-diagonal hybridization

[Bauernfeind et.al, PRX 7, 031013 (2017)]

- O(100) bath sites per orbital
- DMRG and time evolution possible
- SOC: Off-diagonal hybridization

Thanks to Daniel Bauernfeind for implementing the SOC Hamiltonian!

 \rightarrow Ordered moment of 1.07 μ_{B}

At T = 0:

• Type I AFM: no ordering

At T = 0 :

- Type I AFM: no ordering
- FM unit cell: no ordering
 - No alternating solution
 - ANY ordering unlikely

- Small moment present
 - Independent of temperature
 - Band-structure effect
- No long-range ordering
 - Mean field should give finite transition temperature for any finite coupling

- Small moment present
 - Independent of temperature
 - Band-structure effect
- No long-range ordering
 - Mean field should give finite transition temperature for any finite coupling

Why?

Solver itself works

- Benchmark: Sr₂MgOsO₆
 - Os 5d²
 - AFM ordering at 110K [42]

[42] Yuan et al., Inorganic chem. 54, 3422 (2015)

Solver itself works

- Benchmark: Sr₂MgOsO₆
 - Os 5d²
 - AFM ordering at 110K [42]
 - Reproduced in DFT+FTPS

[42] Yuan et al., Inorganic chem. **54**, 3422 (2015)

Explanaitons for no ordering

• Non-local singlets (RVB) [17]

[17] A. Nag et al., PRB 98, 014431 (2018)
Explanaitons for no ordering

- Non-local singlets (RVB) [17]
 - Not doable in single site DMFT

[17] A. Nag et al., PRB 98, 014431 (2018)

Explanaitons for no ordering

• Non-local singlets (RVB) [17]

[17] A. Nag et al., PRB 98, 014431 (2018)

- Not doable in single site DMFT
- Frustration
 - Geometric frustration (fcc sublattice)

Explanaitons for no ordering

• Non-local singlets (RVB) [17]

[17] A. Nag et al., PRB 98, 014431 (2018)

- Not doable in single site DMFT
- Frustration
 - Geometric frustration (fcc sublattice)
 - Configurational frustration

Recap

- Small moment present
 - Independent of temperature
 - Band-structure effect
- No long-range ordering
 - Mean field should give finite transition temperature for any finite coupling

(Configurational) frustrations & dynamic correlations prevent one stable ordered magnetic ground state!

Acknowledgements

Daniel Bauernfeind

Johannes Graspeuntner

Markus Richter

Markus Aichhorn

Tanusri Saha-Dasgupta

itp^{cp} dienna scientific cluster

Der Wissenschaftsfonds.

22 / 22 arXiv:2202.10794